Molecular-based imaging provides unique opportunities to assess the pharmacokinetics and targeting properties of r potential therapeutic agents, as well as to assess vital cellular processes in vivo. The ability to monitor the molecular processes of cancer through non-invasive imaging may provide critical information regarding the effects of therapy. In the context of pre-clinical research, the use of in vivo imaging permits the acquisition of a complete dynamic biodistribution study of a molecular tracer on an single animal, thereby reducing the number of animals required to reach a statistically adequate result. Often the imaging techniques and targeting agents that are tested in small animal imaging modalities are directly transferable to the clinical setting. The Small Animal Imaging Core (SAIC) is a shared resource dedicated to providing investigators access to state of the art small animal imaging capabilities for use in basic and translational research relevant to the mission of the City of Hope Cancer Center.
Specific aims of the SAIC include: (1) keeping abreast of the latest developments, current capabilities, and limitations of small animal imaging as pertains to cancer research;(2) implementing, developing, calibrating, maintaining, and operating relevant imaging systems within the context of a small animal imaging laboratory;and (3) optimizing the use of small animal imaging in research at City of Hope in collaboration with investigators. Core personnel currently include a Director, an imaging physicist, and a manager, all of whom are highly experienced in the use of imaging for research with animals. Small animal imaging systems in operation include two units for bioluminescence optical imaging (one has been modified for fluorescence imaging [IVIS 100, Caliper Life Sciences]);a gamma camera (y- IMAGER, Biospace, Inc.);a PET scanner (microPET R4, Siemens);and a CT scanner (microCAT II Hi Res, Siemens). The microPET and microCAT are readily used in tandem to generate co-registered functional anatomic PET/CT images. The Animal Resources Center has provided three rooms within the Parvin Biomedical Research Building for use by the SAIC (one room for the microPET, microCAT, and the y- IMAGER, and two rooms for the IVIS optical imaging instruments. A system has been developed for monitoring instrument usage and to bill users for a portion of the costs of the imaging procedures.

Public Health Relevance

The overall goal of the Small Animal Imaging core facility is to monitor molecular processes of cancer and cancer fighting agents via small animal imaging technologies. This goal enhances the Cancer Center's dedication to developing innovative new disease-fighting strategies in the battle against cancer.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
2P30CA033572-30
Application #
8450540
Study Section
Subcommittee G - Education (NCI)
Project Start
1997-08-01
Project End
2017-11-30
Budget Start
2013-04-25
Budget End
2013-11-30
Support Year
30
Fiscal Year
2013
Total Cost
$49,651
Indirect Cost
$20,097
Name
City of Hope/Beckman Research Institute
Department
Type
DUNS #
027176833
City
Duarte
State
CA
Country
United States
Zip Code
91010
Wang, Sophia S; Carrington, Mary; Berndt, Sonja I et al. (2018) HLA Class I and II Diversity Contributes to the Etiologic Heterogeneity of Non-Hodgkin Lymphoma Subtypes. Cancer Res 78:4086-4096
Wu, Chenkai; Ashing, Kimlin Tam; Jones, Veronica C et al. (2018) The association of neighborhood context with health outcomes among ethnic minority breast cancer survivors. J Behav Med 41:52-61
Wussow, Felix; Chiuppesi, Flavia; Meng, Zhuo et al. (2018) Exploiting 2A peptides to elicit potent neutralizing antibodies by a multi-subunit herpesvirus glycoprotein complex. J Virol Methods 251:30-37
Kingsmore, Kathryn M; Vaccari, Andrea; Abler, Daniel et al. (2018) MRI analysis to map interstitial flow in the brain tumor microenvironment. APL Bioeng 2:
Paz, Helicia; Joo, Eun Ji; Chou, Chih-Hsing et al. (2018) Treatment of B-cell precursor acute lymphoblastic leukemia with the Galectin-1 inhibitor PTX008. J Exp Clin Cancer Res 37:67
Slavin, Thomas P; Neuhausen, Susan L; Nehoray, Bita et al. (2018) The spectrum of genetic variants in hereditary pancreatic cancer includes Fanconi anemia genes. Fam Cancer 17:235-245
Wildes, Tanya M; Maggiore, Ronald J; Tew, William P et al. (2018) Factors associated with falls in older adults with cancer: a validated model from the Cancer and Aging Research Group. Support Care Cancer 26:3563-3570
Salgia, Ravi; Kulkarni, Prakash (2018) The Genetic/Non-genetic Duality of Drug 'Resistance' in Cancer. Trends Cancer 4:110-118
Yoon, Sorah; Wu, Xiwei; Armstrong, Brian et al. (2018) An RNA Aptamer Targeting the Receptor Tyrosine Kinase PDGFR? Induces Anti-tumor Effects through STAT3 and p53 in Glioblastoma. Mol Ther Nucleic Acids 14:131-141
Gast, Charles E; Silk, Alain D; Zarour, Luai et al. (2018) Cell fusion potentiates tumor heterogeneity and reveals circulating hybrid cells that correlate with stage and survival. Sci Adv 4:eaat7828

Showing the most recent 10 out of 1396 publications