Molecular-based imaging provides unique opportunities to assess the pharmacokinetics and targeting properties of r potential therapeutic agents, as well as to assess vital cellular processes in vivo. The ability to monitor the molecular processes of cancer through non-invasive imaging may provide critical information regarding the effects of therapy. In the context of pre-clinical research, the use of in vivo imaging permits the acquisition of a complete dynamic biodistribution study of a molecular tracer on an single animal, thereby reducing the number of animals required to reach a statistically adequate result. Often the imaging techniques and targeting agents that are tested in small animal imaging modalities are directly transferable to the clinical setting. The Small Animal Imaging Core (SAIC) is a shared resource dedicated to providing investigators access to state of the art small animal imaging capabilities for use in basic and translational research relevant to the mission of the City of Hope Cancer Center.
Specific aims of the SAIC include: (1) keeping abreast of the latest developments, current capabilities, and limitations of small animal imaging as pertains to cancer research;(2) implementing, developing, calibrating, maintaining, and operating relevant imaging systems within the context of a small animal imaging laboratory;and (3) optimizing the use of small animal imaging in research at City of Hope in collaboration with investigators. Core personnel currently include a Director, an imaging physicist, and a manager, all of whom are highly experienced in the use of imaging for research with animals. Small animal imaging systems in operation include two units for bioluminescence optical imaging (one has been modified for fluorescence imaging [IVIS 100, Caliper Life Sciences]);a gamma camera (y- IMAGER, Biospace, Inc.);a PET scanner (microPET R4, Siemens);and a CT scanner (microCAT II Hi Res, Siemens). The microPET and microCAT are readily used in tandem to generate co-registered functional anatomic PET/CT images. The Animal Resources Center has provided three rooms within the Parvin Biomedical Research Building for use by the SAIC (one room for the microPET, microCAT, and the y- IMAGER, and two rooms for the IVIS optical imaging instruments. A system has been developed for monitoring instrument usage and to bill users for a portion of the costs of the imaging procedures.

Public Health Relevance

The overall goal of the Small Animal Imaging core facility is to monitor molecular processes of cancer and cancer fighting agents via small animal imaging technologies. This goal enhances the Cancer Center's dedication to developing innovative new disease-fighting strategies in the battle against cancer.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
2P30CA033572-30
Application #
8450540
Study Section
Subcommittee G - Education (NCI)
Project Start
1997-08-01
Project End
2017-11-30
Budget Start
2013-04-25
Budget End
2013-11-30
Support Year
30
Fiscal Year
2013
Total Cost
$49,651
Indirect Cost
$20,097
Name
City of Hope/Beckman Research Institute
Department
Type
DUNS #
027176833
City
Duarte
State
CA
Country
United States
Zip Code
91010
Tirughana, Revathiswari; Metz, Marianne Z; Li, Zhongqi et al. (2018) GMP Production and Scale-Up of Adherent Neural Stem Cells with a Quantum Cell Expansion System. Mol Ther Methods Clin Dev 10:48-56
Raz, Dan J; Wu, Geena X; Consunji, Martin et al. (2018) The Effect of Primary Care Physician Knowledge of Lung Cancer Screening Guidelines on Perceptions and Utilization of Low-Dose Computed Tomography. Clin Lung Cancer 19:51-57
Solomon, Ilana; Rybak, Christina; Van Tongeren, Lily et al. (2018) Experience Gained from the Development and Execution of a Multidisciplinary Multi-syndrome Hereditary Colon Cancer Family Conference. J Cancer Educ :
Wang, Dongrui; Aguilar, Brenda; Starr, Renate et al. (2018) Glioblastoma-targeted CD4+ CAR T cells mediate superior antitumor activity. JCI Insight 3:
Cheng, Chun-Ting; Qi, Yue; Wang, Yi-Chang et al. (2018) Arginine starvation kills tumor cells through aspartate exhaustion and mitochondrial dysfunction. Commun Biol 1:178
Cho, H; Ayers, K; DePills, L et al. (2018) Modelling acute myeloid leukaemia in a continuum of differentiation states. Lett Biomath 5:S69-S98
Querfeld, Christiane; Leung, Samantha; Myskowski, Patricia L et al. (2018) Primary T Cells from Cutaneous T-cell Lymphoma Skin Explants Display an Exhausted Immune Checkpoint Profile. Cancer Immunol Res 6:900-909
Liu, Xuxiang; Cao, Minghui; Palomares, Melanie et al. (2018) Metastatic breast cancer cells overexpress and secrete miR-218 to regulate type I collagen deposition by osteoblasts. Breast Cancer Res 20:127
Das, Sadhan; Reddy, Marpadga A; Senapati, Parijat et al. (2018) Diabetes Mellitus-Induced Long Noncoding RNA Dnm3os Regulates Macrophage Functions and Inflammation via Nuclear Mechanisms. Arterioscler Thromb Vasc Biol 38:1806-1820
Al Malki, Monzr M; Nathwani, Nitya; Yang, Dongyun et al. (2018) Melphalan-Based Reduced-Intensity Conditioning is Associated with Favorable Disease Control and Acceptable Toxicities in Patients Older Than 70 with Hematologic Malignancies Undergoing Allogeneic Hematopoietic Stem Cell Transplantation. Biol Blood Marrow Transplant 24:1828-1835

Showing the most recent 10 out of 1396 publications