Gene Regulation and Cell Proliferation Program Program Leader: David L. Spector Program Co-leader: Christopher R. Vakoc Project Summary Alterations in the regulation of gene expression and promiscuous entry into the cell cycle are defining characteristics of human cancer cells. The Gene Regulation and Cell Proliferation Program (GR) represents an interdisciplinary program with the central aim focused on understanding the regulation of gene expression and cell proliferation in cancer cells. The program has three main focus areas: (1) RNA Biology, (2) Cancer Epigenetics, and (3) Cell Proliferation. Research in this Program over the past five years has produced major advances in our understanding of cancer promoting pathways and has led to the discovery of novel therapeutic strategies now under investigation in, or moving toward, human clinical trials. In the area of RNA biology, researchers in the GR Program have shown that machineries that regulate alternative pre-mRNA splicing reactions include a major class of oncoproteins in human breast and skin cancers. In addition, long non-coding RNAs have been causally linked to the differentiation and metastatic programs in breast cancer, thus motivating the evaluation of anti-sense oligonucleotide (ASO)-based therapeutics in pre-clinical models and in human clinical trials. Researchers investigating small RNA pathways have obtained insight into how cancer cells communicate with their microenvironment using exosomes and evade sensitivity to kinase-targeted therapeutics. An epigenetics focus of this program has led to the discovery that hematological malignancies exploit bromodomain-containing proteins to sustain oncogenic enhancer landscapes. This has led to a rationale to target specific bromodomains in cancer, an approach that is now under investigation in ealy stage clinical trials. Epigenomic profiling of mammary gland cell types is also revealing how a woman's risk for developing breast cancer can be modulated by transient signaling events during pregnancy. Studies in the area of DNA replication are focused on the mechanisms of origin recognition proteins and replicative DNA helicases, including those utilized by tumor-causing papillomaviruses. Technology development continues to be a major focus of the GR program. A novel CRISPR-based functional genomics strategy is revealing core gene regulatory circuitries that sustain the cancer cell state and is also identifying strategies to bolster blood stem cell self-renewal. High throughput screening of ASOs targeting long non-coding RNAs is leading to the identification of targetable vulnerabilites in breast cancers. A continued effort that balances basic research into molecular mechanisms with therapeutic development will lead to continued synergies among members of the Program that is fostered by the Cancer Center. Since 9/1/10, the GR Program published 126 cancer-related research articles, 30 (24%) involved multiple Cancer Center members; 11 (9%) from intra-programmatic collaborations and 25 (20%) from inter-programmatic collaborations. As of 8/1/15, scientists in the GR Program held $3.6 million of direct costs secured from NCI, other peer reviewed and non-peer reviewed, cancer-related research support. Of this, $3.2 million was from NCI and other peer reviewed cancer-related funding sources.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
5P30CA045508-33
Application #
9975723
Study Section
Subcommittee I - Transistion to Independence (NCI)
Project Start
Project End
Budget Start
2020-08-01
Budget End
2021-07-31
Support Year
33
Fiscal Year
2020
Total Cost
Indirect Cost
Name
Cold Spring Harbor Laboratory
Department
Type
DUNS #
065968786
City
Cold Spring Harbor
State
NY
Country
United States
Zip Code
11724
Knott, Simon R V; Wagenblast, Elvin; Khan, Showkhin et al. (2018) Asparagine bioavailability governs metastasis in a model of breast cancer. Nature 554:378-381
Biffi, Giulia; Oni, Tobiloba E; Spielman, Benjamin et al. (2018) IL-1-induced JAK/STAT signaling is antagonized by TGF-beta to shape CAF heterogeneity in pancreatic ductal adenocarcinoma. Cancer Discov :
Xie, Yuanyuan; Cao, Zhen; Wong, Elissa Wp et al. (2018) COP1/DET1/ETS axis regulates ERK transcriptome and sensitivity to MAPK inhibitors. J Clin Invest 128:1442-1457
Aznarez, Isabel; Nomakuchi, Tomoki T; Tetenbaum-Novatt, Jaclyn et al. (2018) Mechanism of Nonsense-Mediated mRNA Decay Stimulation by Splicing Factor SRSF1. Cell Rep 23:2186-2198
Fang, Han; Huang, Yi-Fei; Radhakrishnan, Aditya et al. (2018) Scikit-ribo Enables Accurate Estimation and Robust Modeling of Translation Dynamics at Codon Resolution. Cell Syst 6:180-191.e4
Lin, Kuan-Ting; Ma, Wai Kit; Scharner, Juergen et al. (2018) A human-specific switch of alternatively spliced AFMID isoforms contributes to TP53 mutations and tumor recurrence in hepatocellular carcinoma. Genome Res :
Wolff, Robert A; Wang-Gillam, Andrea; Alvarez, Hector et al. (2018) Dynamic changes during the treatment of pancreatic cancer. Oncotarget 9:14764-14790
Ryan, Niamh M; Lihm, Jayon; Kramer, Melissa et al. (2018) DNA sequence-level analyses reveal potential phenotypic modifiers in a large family with psychiatric disorders. Mol Psychiatry 23:2254-2265
Danko, Charles G; Choate, Lauren A; Marks, Brooke A et al. (2018) Dynamic evolution of regulatory element ensembles in primate CD4+ T cells. Nat Ecol Evol 2:537-548
Ahrens, Sandra; Wu, Melody V; Furlan, Alessandro et al. (2018) A Central Extended Amygdala Circuit That Modulates Anxiety. J Neurosci 38:5567-5583

Showing the most recent 10 out of 380 publications