The purpose of the Cytogenetics Laboratory Shared Resource is to provide cytogenetic analysis, gene mapping and chromosomal microdissection services for members of the San Antonio Cancer Institute. The technical expertise and equipment required for cytogenetic analysis, gene mapping and chromosomal microdissection make it cost prohibitive and undesirable for independent investigators to perform these studies in their own laboratories. The past options for Cancer Center members have been to contract for these services commercially or collaborate with clinical services laboratories which are concerned with patient sample analysis. The objective of this core will be to provide San Antonio Cancer Institute members affordable comprehensive cytogenetic studies for research specimens for the actual costs of the services. a. Cytogenetic analysis of tumor specimens and cell lines Chromosomal analysis of cell lines or tumor specimens: Techniques which will be offered include G-banding (trypsin, Wright's stain, Borate), Q- banding, C- and R-banding, G-11, high resolution banding. 10 - 15 metaphase spreads will be analyzed and a karyotype will be produced. The laboratory is set up for analysis of chromosomes from a variety of tissue types including: tissue cultured cells (adherent or suspension cells) peripheral blood cells, bone marrow and solid tumor. Chromosomal analysis of human-rodent somatic cell hybrid cells will also be performed. b. Chromosomal in situ hybridization Techniques offered include (a) FISH (fluorescent in situ hybridization) analysis for chromosome labeling or gene mapping with cosmids and (b) radiolabeled in situ hybridization for gene mapping with small inserts. c. Chromosome microdissection and microcloning (CMM) Chromosome microdissection for the molecular analysis of specific chromosome regions will be offered. This recently described technique allows small pieces of chromatin to be selectively scrapped from chromosomes. This method provides clones for the starting points for molecular analysis from specific chromosome regions linked to specific diseases (Rohme et al., 1984; Ludecke et al., 1989). There are many specific chromosomal regions of interest associated with neoplasia that this procedure might prove invaluable for the generation of new genetic tumor markers. CMM is a method which provides for the rapid isolation of picogram quantities of DNA from targeted chromosome regions. CMM allows the rapid construction of molecular probes from chromosome regions associated with cancers. CMM therefore provides a new experimental approach to analyze specific chromosome regions associated with human diseases with significant morbidity and mortality. d. Technical improvements for genetic analysis Provide technical expertise and facilities for implementation of new techniques as they are developed (e.g., comparative genomic hybridization). The exciting technological advancement known as comparative genomic hybridization (Kallioniemi et al.,1 992) produces a map of DNA sequence copy number as a function of chromosomal location throughout the entire genetic genome. Test DNA (from cancer cells) and reference DNA (from normal cells) are differentially labeled and hybridized simultaneously to normal human peripheral blood chromosome metaphase spreads. This hybridization is detected with two different fluorochromes. Deletions, duplications or amplifications are observed as changes in the ration of the intensities of the two fluorochromes along the chromosome.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
7P30CA054174-05
Application #
3731292
Study Section
Project Start
Project End
Budget Start
Budget End
Support Year
5
Fiscal Year
1995
Total Cost
Indirect Cost
Name
Ctrc Research Foundation
Department
Type
DUNS #
City
San Antonio
State
TX
Country
United States
Zip Code
78229
Yu, Xiaojie; Zhang, Yiqiang; Ma, Xiuye et al. (2018) miR-195 potentiates the efficacy of microtubule-targeting agents in non-small cell lung cancer. Cancer Lett 427:85-93
Ankerst, Donna P; Goros, Martin; Tomlins, Scott A et al. (2018) Incorporation of Urinary Prostate Cancer Antigen 3 and TMPRSS2:ERG into Prostate Cancer Prevention Trial Risk Calculator. Eur Urol Focus :
Arora, Sukeshi Patel; Mahalingam, Devalingam (2018) Immunotherapy in colorectal cancer: for the select few or all? J Gastrointest Oncol 9:170-179
Arellano, Luisa M; Arora, Sukeshi Patel (2018) Systemic Treatment of Advanced Hepatocellular Carcinoma in Older Adults. J Nat Sci 4:
Du, Liqin; Zhao, Zhenze; Suraokar, Milind et al. (2018) LMO1 functions as an oncogene by regulating TTK expression and correlates with neuroendocrine differentiation of lung cancer. Oncotarget 9:29601-29618
Ankerst, Donna P; Straubinger, Johanna; Selig, Katharina et al. (2018) A Contemporary Prostate Biopsy Risk Calculator Based on Multiple Heterogeneous Cohorts. Eur Urol 74:197-203
Sun, Xiujie; Gupta, Kshama; Wu, Bogang et al. (2018) Tumor-extrinsic discoidin domain receptor 1 promotes mammary tumor growth by regulating adipose stromal interleukin 6 production in mice. J Biol Chem 293:2841-2849
Horning, Aaron M; Wang, Yao; Lin, Che-Kuang et al. (2018) Single-Cell RNA-seq Reveals a Subpopulation of Prostate Cancer Cells with Enhanced Cell-Cycle-Related Transcription and Attenuated Androgen Response. Cancer Res 78:853-864
Gong, Siqi; Tomusange, Khamis; Kulkarni, Viraj et al. (2018) Anti-HIV IgM protects against mucosal SHIV transmission. AIDS 32:F5-F13
Gelfond, Jonathan; Goros, Martin; Hernandez, Brian et al. (2018) A System for an Accountable Data Analysis Process in R. R J 10:6-21

Showing the most recent 10 out of 989 publications