The Cancer Development and Progression (CDP) research program, one of the three current and interactive programs of the Cancer Therapy &Research Center (CTRC) at the University of Texas Health Science Center at San Antonio (UTHSCSA), has evolved from the merging of essential elements of several cancer center programs since the last competitive renewal. The major thematic areas under CDP are: (1) Genomic Integrity, (2) Aging and Cancer, (3) Chronic Inflammation and Cancer, and (4) Women's Cancer. The reorganization reflects some significant changes in the previous program areas, including the departure of several key members and new cancer focuse areas brought to the Center by newly recruited cancer research scientists. The new programmatic structure provides a consolidated platform that is more conducive to collaborative and integrative cancer research. All of the above themes have the potential to develop or re-develop into strong, stand-alone programs in the future, and are expected to do so. The overarching scientific goals of the CDP Program are: (1) to integrate basic research in genomic integrity, age-related cancer susceptibility, tumor microenvironment, and hormone actions and therapeutic resistance in women's cancer to gain a deeper understanding of cancer development and progression;(2) to foster cross-disciplinary collaboration between CDP and the research programs in population studies and experimental and developmental therapeutics;and (3) to translate findings of genetic instability, tumor immunity, obesity/nutrition, and hormone resistance into better cancer prevention and treatment. Currently, the CDP research program has 23 key cancer-focused and funded members and another 25 funded members who conduct cancer-related research that contributes to the understanding of cancer development and progression. Cancer research in the CDP Program receives a total of $7.5 million in peer-reviewed funding (direct), of which $2.4 million is from the NCI (direct). In the current funding period, researchers in the CDP program have made a number of major accomplishments in many areas of cancer biology. These include discoveries of novel factors in double strand DNA break repair, new molecular links between genetic instability and aging, important insight into host-tumor interactions, and molecular interplay of hormone synthesis and actions in breast cancer development. With new cancer research focus, reconfigured interactive programmatic structure, and strong leadership, the CDP Program is well positioned to synergize and integrate further the multi-disciplinary cancer research ongoing in our Cancer Center.

Public Health Relevance

The broad yet thematically linked research themes in the CDP Program represent a strong foundation for basic cancer-focused research in the Cancer Center. By integrating trans-disciplinary efforts to address the fundamental problems in cancer development and progression, this Program has the tremendous potential of leading to new cancer prevention and treatment strategies.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
2P30CA054174-17
Application #
7944716
Study Section
Subcommittee G - Education (NCI)
Project Start
2009-08-03
Project End
2012-07-31
Budget Start
2009-08-03
Budget End
2010-07-31
Support Year
17
Fiscal Year
2009
Total Cost
$41,373
Indirect Cost
Name
University of Texas Health Science Center San Antonio
Department
Type
DUNS #
800772162
City
San Antonio
State
TX
Country
United States
Zip Code
78229
Deng, Yilun; Qin, Yuejuan; Srikantan, Subramanya et al. (2018) The TMEM127 human tumor suppressor is a component of the mTORC1 lysosomal nutrient-sensing complex. Hum Mol Genet 27:1794-1808
Wei, Zhen; Panneerdoss, Subbarayalu; Timilsina, Santosh et al. (2018) Topological Characterization of Human and Mouse m5C Epitranscriptome Revealed by Bisulfite Sequencing. Int J Genomics 2018:1351964
Chiang, Huai-Chin; Zhang, Xiaowen; Zhao, Xiayan et al. (2018) Gene-Specific Genetic Complementation between Brca1 and Cobra1 During Mouse Mammary Gland Development. Sci Rep 8:2731
Zanotto-Filho, Alfeu; Rajamanickam, Subapriya; Loranc, Eva et al. (2018) Sorafenib improves alkylating therapy by blocking induced inflammation, invasion and angiogenesis in breast cancer cells. Cancer Lett 425:101-115
Segovia, Jesus A; Chang, Te-Hung; Winter, Vicki T et al. (2018) NLRP3 Is a Critical Regulator of Inflammation and Innate Immune Cell Response during Mycoplasma pneumoniae Infection. Infect Immun 86:
Donegan, Jennifer J; Boley, Angela M; Lodge, Daniel J (2018) Embryonic stem cell transplants as a therapeutic strategy in a rodent model of autism. Neuropsychopharmacology 43:1789-1798
Vaidya, Anand; Flores, Shahida K; Cheng, Zi-Ming et al. (2018) EPAS1 Mutations and Paragangliomas in Cyanotic Congenital Heart Disease. N Engl J Med 378:1259-1261
Cepeda, Sergio; Cantu, Carolina; Orozco, Stephanie et al. (2018) Age-Associated Decline in Thymic B Cell Expression of Aire and Aire-Dependent Self-Antigens. Cell Rep 22:1276-1287
Snead, Wilton T; Zeno, Wade F; Kago, Grace et al. (2018) BAR scaffolds drive membrane fission by crowding disordered domains. J Cell Biol :
Ramasamy, Kumaraguruparan; Balasubramanian, Sowmya; Manickam, Krishnan et al. (2018) Mycoplasma pneumoniae Community-Acquired Respiratory Distress Syndrome Toxin Uses a Novel KELED Sequence for Retrograde Transport and Subsequent Cytotoxicity. MBio 9:

Showing the most recent 10 out of 989 publications