The primary purpose of this shared resource is to generate novel polyclonal and monoclonal antibody reagents, to assist investigators in characterization and optimization of these reagents, and to provide other technical assistance for antibody-related research. Availability of high quality antibody reagents is critical for understanding protein function in normal and neoplastic cells and tissues.
We aim to provide antibodies to cancer center members in a timely manner at a reduced cost, relative to commercial custom antibody services. We can also provide an expanded range of services that are not generally available from commercial sources, so that more investigators without expertise or equipment for molecular cell biology or biochemistry can successfully generate and characterize custom antibody reagents. Our most commonly used services include the generation of rabbit polyclonal antibodies, purification and/or testing of polyclonal antibody, generation of mouse polyclonal antibodies, and the generation, purification, characterization and testing of mouse monoclonal antibodies. Other services that we have provided include production and purification of bacterially expressed fusion protein antigens, antibody isotyping, cryopreservation and storage of hybridoma lines, preparation of Fab fragments from existing antibodies, adaptation of hybridoma lines to serum-free culture and recovery of poorly frozen hybridoma cell lines from other sources.

Public Health Relevance

The mission of the Antibody Shared Resource is to generate novel polyclonal and monoclonal antibody reagents, and to provide antibody-related advice and services to aid cancer center investigators in their research. It is our aim to provide these services in a timely and cost-effective manner.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
3P30CA054174-19S5
Application #
8637191
Study Section
Subcommittee G - Education (NCI)
Project Start
1997-08-01
Project End
2014-07-31
Budget Start
2013-08-01
Budget End
2014-07-31
Support Year
19
Fiscal Year
2013
Total Cost
$19,493
Indirect Cost
$6,454
Name
University of Texas Health Science Center San Antonio
Department
Type
DUNS #
800772162
City
San Antonio
State
TX
Country
United States
Zip Code
78229
Chalela, Patricia; Muñoz, Edgar; Gallion, Kipling J et al. (2018) Empowering Latina breast cancer patients to make informed decisions about clinical trials: a pilot study. Transl Behav Med 8:439-449
Chalela, P; Munoz, E; Inupakutika, D et al. (2018) Improving adherence to endocrine hormonal therapy among breast cancer patients: Study protocol for a randomized controlled trial. Contemp Clin Trials Commun 12:109-115
Liu, Jinyou; Sareddy, Gangadhara R; Zhou, Mei et al. (2018) Differential Effects of Estrogen Receptor ? Isoforms on Glioblastoma Progression. Cancer Res 78:3176-3189
Weiner, Marc; Gelfond, Jon; Johnson-Pais, Teresa L et al. (2018) Elevated Plasma Moxifloxacin Concentrations and SLCO1B1 g.-11187G>A Polymorphism in Adults with Pulmonary Tuberculosis. Antimicrob Agents Chemother 62:
Chakravarthy, Divya; Muñoz, Amanda R; Su, Angel et al. (2018) Palmatine suppresses glutamine-mediated interaction between pancreatic cancer and stellate cells through simultaneous inhibition of survivin and COL1A1. Cancer Lett 419:103-115
Van Skike, Candice E; Jahrling, Jordan B; Olson, Angela B et al. (2018) Inhibition of mTOR protects the blood-brain barrier in models of Alzheimer's disease and vascular cognitive impairment. Am J Physiol Heart Circ Physiol 314:H693-H703
Cooney, Jeffrey D; Lin, An-Ping; Jiang, Daifeng et al. (2018) Synergistic Targeting of the Regulatory and Catalytic Subunits of PI3K? in Mature B-cell Malignancies. Clin Cancer Res 24:1103-1113
Zhu, Haiyan; Gu, Xiang; Xia, Lu et al. (2018) A Novel TGF? Trap Blocks Chemotherapeutics-Induced TGF?1 Signaling and Enhances Their Anticancer Activity in Gynecologic Cancers. Clin Cancer Res 24:2780-2793
Bandyopadhyay, Abhik; Favours, Edward; Phelps, Doris A et al. (2018) Evaluation of patritumab with or without erlotinib in combination with standard cytotoxic agents against pediatric sarcoma xenograft models. Pediatr Blood Cancer 65:
Azpurua, Jorge; Mahoney, Rebekah E; Eaton, Benjamin A (2018) Transcriptomics of aged Drosophila motor neurons reveals a matrix metalloproteinase that impairs motor function. Aging Cell 17:

Showing the most recent 10 out of 989 publications