The Onco-lmaging &Spectroscopy (OIS) Program is designed to pursue basic, translational, and clinical research involving the use of biomedical imaging in the diagnosis, early-detection, molecular imaging, staging, and treatment of cancer. The imaging technologies developed within this Program include both small animal and human devices. After successful evaluation of some of the small animal imaging technologies, they are upscaled for human oncological imaging and used in translational clinical projects. The program is supported by two UCI centers, the Beckman Laser Institute (BLI) and the Center for Functional Onco-lmaging, both located on UCI's South Campus. Both of these Centers join their respective strengths to pursue a strong research program in cancer imaging through the Center. The goals of the OIS Program are multi-fold. First is to develop biophotonics technologies uniquely suited for oncological studies, focused on the application of optical measurement techniques in various types of cancer including breast, skin, and Gl for the purposes of early diagnosis and determination of therapeutic response. The second goal is to develop and validate multi-modality imaging technologies combining various different technologies such as MRI-DOT, MRI-FT, MRI-SPECT, and XCT-FT. It has been shown that such multimodality devices combine anatomical landmarks with molecular signatures for improved detection and determination of therapeutic response. The third goal is to translate the developed imaging technologies to human studies. The application of DCE-MRI is an excellent example of this effort, having been developed and validated in animal models of cancer in the mid-1990s and has been successfully applied in human studies since late 1990s. The fourth goal is to apply the developed imaging technologies in clinical trials. The OIS Program has 18 Members, representing eight Departments and three Schools, and has $4,787,231 in direct cancer-related peer-reviewed funding, six projects of which are funded by NCI for a direct total of $2,060,049. In 2007, Members published a total of 44 publications with 20 of those being cancer-related of which 65% were inter- and 65% were intra-related.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
2P30CA062203-14
Application #
7944520
Study Section
Subcommittee G - Education (NCI)
Project Start
2009-04-06
Project End
2012-01-31
Budget Start
2009-04-06
Budget End
2010-01-31
Support Year
14
Fiscal Year
2009
Total Cost
$22,238
Indirect Cost
Name
University of California Irvine
Department
Type
DUNS #
046705849
City
Irvine
State
CA
Country
United States
Zip Code
92697
Koay, Eugene J; Lee, Yeonju; Cristini, Vittorio et al. (2018) A Visually Apparent and Quantifiable CT Imaging Feature Identifies Biophysical Subtypes of Pancreatic Ductal Adenocarcinoma. Clin Cancer Res 24:5883-5894
Wilford, Justin; Osann, Kathryn; Hsieh, Susie et al. (2018) Validation of PROMIS emotional distress short form scales for cervical cancer. Gynecol Oncol 151:111-116
Bagaev, Alexander; Pichugin, Aleksey; Nelson, Edward L et al. (2018) Anticancer Mechanisms in Two Murine Bone Marrow-Derived Dendritic Cell Subsets Activated with TLR4 Agonists. J Immunol 200:2656-2669
Gong, Nian; Park, John; Luo, Z David (2018) Injury-induced maladaptation and dysregulation of calcium channel ?2 ? subunit proteins and its contribution to neuropathic pain development. Br J Pharmacol 175:2231-2243
Qiu, Xiaolong; Huang, Jen-Huang; Westerhof, Trisha M et al. (2018) Microfluidic channel optimization to improve hydrodynamic dissociation of cell aggregates and tissue. Sci Rep 8:2774
Kim, Seong M; Nguyen, Tricia T; Ravi, Archna et al. (2018) PTEN Deficiency and AMPK Activation Promote Nutrient Scavenging and Anabolism in Prostate Cancer Cells. Cancer Discov 8:866-883
Zhu, Yong; Wang, Xiuye; Forouzmand, Elmira et al. (2018) Molecular Mechanisms for CFIm-Mediated Regulation of mRNA Alternative Polyadenylation. Mol Cell 69:62-74.e4
Mishra, Birendra; Lawson, Gregory W; Ripperdan, Ryan et al. (2018) Charged-Iron-Particles Found in Galactic Cosmic Rays are Potent Inducers of Epithelial Ovarian Tumors. Radiat Res 190:142-150
Song, Wan; Zsindely, Nóra; Faragó, Anikó et al. (2018) Systematic genetic interaction studies identify histone demethylase Utx as potential target for ameliorating Huntington's disease. Hum Mol Genet 27:649-666
Lin, Xiaoxiao; Itoga, Christy A; Taha, Sharif et al. (2018) c-Fos mapping of brain regions activated by multi-modal and electric foot shock stress. Neurobiol Stress 8:92-102

Showing the most recent 10 out of 1106 publications