The Free Radical Cancer Biology Program (FRCBP) is unique to the HCCC and focuses on studying the biology of inherent differences in reductive and oxidative (redox) metabolism between cancer vs. normal cells. Research in the program is determining the role that redox reactions play in cancer phenotypic changes relevant to cell growth, differentiation, signal transduction, metastasis, functional molecular imaging, and therapy. A unifying goal of the program is to utilize a comprehensive basic science understanding of redox biology to develop novel biochemical rationales for improving cancer therapy. Three overlapping themes exist within the program. Theme 1: Understanding the role of redox biochemistry in regulation of genetic and epigenetic gene expression pathways relevant to cancer biology. Within this theme are research areas of focus exploring redox fluctuations and gene expression globally, as well as gene expression changes related of key redox sensitive molecules such as glutathione, thioredoxin, SOD, and AP2. Ttieme 2: Understanding the role of redox regulation in cell biology. Within this theme are research areas exploring the effects of redox on the cell cycle as well as invasion and metastasis. Ttieme 3: Exploring the role of oxidative stress in therapy outcomes. Within this theme are research areas exploring the role of manipulating oxidative stress to improve therapy as well as using imaging of oxidative metabolism as an approach to monitor and guide therapy. Major accomplishments of the FRCBP over the past funding period include findings that (a) cancer cells (relative to normal cells) produce increased steady-state levels of 02*'and H2O2 from mitochondrial metabolism that significantly contribute to differential susceptibility to clonogenic cell killing induced by glucose deprivation;(b) extracellular superoxide dismutase (EcSOD) inhibits invasion and metastasis;(c) expression of MnSOD governs the late production of reactive oxygen species, cell cycle check points, and transformation following radiation exposure;(d) that inhibitors of glucose and hydroperoxide metabolism can be used to enhance responses to radio-chemo-therapy by enhancing metabolic oxidative stress. The FRCBP consists of 18 members from 1 basic science department and 6 clinical departments and 2 colleges. Peer-reviewed, research funding for this program totals $3.9 million with over $2.0 million total costs from NCI. FRCBP members co-authored 237 publications. Of these publications, 20% were intraprogrammatic, 24% were interprogrammatic and 10% were both intra and interprogrammatic, for a total of 54% collaborative publications.

Public Health Relevance

It is becoming clear that metabolic oxidation/reduction reactions are altered in cancer vs. normal cells. The consensus is that cancer cells may exist in a chronic state of metabolic oxidative stress that may represent a significant underlying mechanism contributing to malignancy. A unifying goal of research in the FRCBP is to utilize a comprehensive understanding of cancer vs. normal cell redox biology to develop novel biochemical rationales for improving cancer therapy taking advantage fundamental differences in oxidative metabolism.

National Institute of Health (NIH)
National Cancer Institute (NCI)
Center Core Grants (P30)
Project #
Application #
Study Section
Subcommittee G - Education (NCI)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Iowa
Iowa City
United States
Zip Code
Brooks, John M; Chapman, Cole G; Schroeder, Mary C (2018) Understanding Treatment Effect Estimates When Treatment Effects Are Heterogeneous for More Than One Outcome. Appl Health Econ Health Policy 16:381-393
Yates, Luke A; Aramayo, Ricardo J; Pokhrel, Nilisha et al. (2018) A structural and dynamic model for the assembly of Replication Protein A on single-stranded DNA. Nat Commun 9:5447
Lynch, Thomas J; Anderson, Preston J; Rotti, Pavana G et al. (2018) Submucosal Gland Myoepithelial Cells Are Reserve Stem Cells That Can Regenerate Mouse Tracheal Epithelium. Cell Stem Cell 22:653-667.e5
Albright, Emily L; Schroeder, Mary C; Foster, Kendra et al. (2018) Nipple-Sparing Mastectomy is Not Associated with a Delay of Adjuvant Treatment. Ann Surg Oncol 25:1928-1935
Hu, G; Dasari, S; Asmann, Y W et al. (2018) Targetable fusions of the FRK tyrosine kinase in ALK-negative anaplastic large cell lymphoma. Leukemia 32:565-569
Link, Brian K (2018) Transformation of follicular lymphoma - Why does it happen and can it be prevented? Best Pract Res Clin Haematol 31:49-56
Guy, Christopher L; Weiss, Elisabeth; Christensen, Gary E et al. (2018) CALIPER: A deformable image registration algorithm for large geometric changes during radiotherapy for locally advanced non-small cell lung cancer. Med Phys 45:2498-2508
Scott, Aaron T; Howe, James R (2018) Management of Small Bowel Neuroendocrine Tumors. J Oncol Pract 14:471-482
Pelletier, Daniel J; Czeczok, Thomas W; Bellizzi, Andrew M (2018) A monoclonal antibody against SV40 large T antigen (PAb416) does not label Merkel cell carcinoma. Histopathology 73:162-166
Li, Fengyin; Zeng, Zhouhao; Xing, Shaojun et al. (2018) Ezh2 programs TFH differentiation by integrating phosphorylation-dependent activation of Bcl6 and polycomb-dependent repression of p19Arf. Nat Commun 9:5452

Showing the most recent 10 out of 1080 publications