The overall goals of the Center are to: (1) Provide better access to standard laboratory analyses and facilities; (2) assist in recruitment of study patients with diabetes and suitable controls, and provide complex animal models such as primates for diabetes-related investigation; (3) foster the development and efficient use of new technologies relevant to diabetes research; (4) coordinate, stimulate and support collaborative studies between investigators interested in diabetes at the U of Washington; and (5) enhance the environment for research training of post doctoral fellows and predoctoral medical and basic science students interested in Diabetes and related metabolic and endocrine disorders. To accomplish these goals the Diabetes Endocrinology Research Center is organized around six core units: Administrative Core, Clinical Research Core, Cytohistochemistry Core, Immunoassay Core, Physiology Core and Tissue Culture Core. Through specific services provided,, these cores support the research of over 40 Affiliate investigators and 36 Associate investigators. This research covers the entire spectrum of diabetes investigation including (a) molecular, cellular and physiological regulation of metabolic hormones and the mechanism of hormone action, (b) etiology and pathogenesis of IDDM and NIDDM, (c) mechanism of hyperlipidemia and the role of lipoproteins in atherosclerosis, (d) etiology, pathogenesis, treatment and prevention of diabetic complications and (e) etiology and pathogenesis of obesity. In addition, the Center's Pilot and Feasibility and Molecular Studies Development Programs provide initial support for new investigators in the field of diabetes, new diabetes research by established investigators in other disciplines and encourages the application of molecular biology to problems in the field of diabetes. To enhance the scientific environment for diabetes research at the University of Washington, the Center's Enrichment Program provides a Seminar Series, Core Symposia, and Visiting Scientist Program.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Center Core Grants (P30)
Project #
5P30DK017047-24
Application #
6124751
Study Section
Special Emphasis Panel (ZDK1-GRB-C (O1))
Program Officer
Abraham, Kristin M
Project Start
1977-06-01
Project End
2002-11-30
Budget Start
1999-12-01
Budget End
2000-11-30
Support Year
24
Fiscal Year
2000
Total Cost
$1,010,039
Indirect Cost
Name
University of Washington
Department
Internal Medicine/Medicine
Type
Schools of Medicine
DUNS #
135646524
City
Seattle
State
WA
Country
United States
Zip Code
98195
Yi-Frazier, Joyce P; Cochrane, Katie; Whitlock, Kathryn et al. (2018) Trajectories of Acute Diabetes-Specific Stress in Adolescents With Type 1 Diabetes and Their Caregivers Within the First Year of Diagnosis. J Pediatr Psychol 43:645-653
Kuzma, Jessica N; Cromer, Gail; Hagman, Derek K et al. (2018) Consuming glucose-sweetened, not fructose-sweetened, beverages increases fasting insulin in healthy humans. Eur J Clin Nutr :
Basu, Debapriya; Hu, Yunying; Huggins, Lesley-Ann et al. (2018) Novel Reversible Model of Atherosclerosis and Regression Using Oligonucleotide Regulation of the LDL Receptor. Circ Res 122:560-567
Alpers, Charles E; Hudkins, Kelly L (2018) Pathology identifies glomerular treatment targets in diabetic nephropathy. Kidney Res Clin Pract 37:106-111
Campos, Carlos A; Bowen, Anna J; Roman, Carolyn W et al. (2018) Encoding of danger by parabrachial CGRP neurons. Nature 555:617-622
Kim, C; Miller, R S; Braffett, B H et al. (2018) Ovarian markers and irregular menses among women with type 1 diabetes in the Epidemiology of Diabetes Interventions and Complications study. Clin Endocrinol (Oxf) 88:453-459
Wander, Pandora L; Hayashi, Tomoshige; Sato, Kyoko Kogawa et al. (2018) Design and validation of a novel estimator of visceral adipose tissue area and comparison to existing adiposity surrogates. J Diabetes Complications 32:1062-1067
Han, Seung Jin; Fujimoto, Wilfred Y; Kahn, Steven E et al. (2018) Change in visceral adiposity is an independent predictor of future arterial pulse pressure. J Hypertens 36:299-305
Wacker, Bradley K; Dronadula, Nagadhara; Bi, Lianxiang et al. (2018) Apo A-I (Apolipoprotein A-I) Vascular Gene Therapy Provides Durable Protection Against Atherosclerosis in Hyperlipidemic Rabbits. Arterioscler Thromb Vasc Biol 38:206-217
Coleman, Brantley; Topalidou, Irini; Ailion, Michael (2018) Modulation of Gq-Rho Signaling by the ERK MAPK Pathway Controls Locomotion in Caenorhabditis elegans. Genetics 209:523-535

Showing the most recent 10 out of 1296 publications