The mission of the Molecular Biology/Molecular Genetics (MBMG) Core is to assist investigators seeking to discover the molecular bases of obesity and its co-morbidities. Through collaborative efforts with other NYONRC Cores, the effects of defined genetic alterations in humans and rodents on ingestive behavior, energy balance, body composition, and endocrine function can be characterized. The role of candidate molecules in tissues and cells related to energy homeostasis can be delineated through experimentation on both human subjects and rodent models. Access to sophisticated manipulations of the mouse genome and to in vitro manipulation of genes are also critical to generating and testing hypotheses with regard to mechanisms by which genetic effects are conveyed. Finally, the use of stem cells to replicate the cell-based consequences of genetic variation is playing a rapidly growing role in biomedical research. The modern tools of molecular biology and molecular genetic analysis comprise rapidly expanding techniques for acquiring and interpreting large amounts of data relating to gene sequence, variation in genomic architecture, gene expression and gene function. These approaches require specialized, costly equipment, skilled technical personnel and increasingly intense and complex computational analysis, all of which are inefficiently replicated in multiple individual laboratories. The objectives of the MBMG Core are to minimize barriers to the integration of cutting edge technologies of molecular genetics and genomics into the research of the Center's constituencies;to allow experienced investigators as well as researchers who are not molecular geneticists to add this dimension to their studies at reasonable cost.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Center Core Grants (P30)
Project #
2P30DK026687-31
Application #
8135912
Study Section
Special Emphasis Panel (ZDK1-GRB-2 (J2))
Project Start
2011-04-01
Project End
2016-03-31
Budget Start
2011-06-11
Budget End
2012-03-31
Support Year
31
Fiscal Year
2011
Total Cost
$176,915
Indirect Cost
Name
St. Luke's-Roosevelt Institute for Health Sciences
Department
Type
DUNS #
623216371
City
New York
State
NY
Country
United States
Zip Code
10019
Rosenbaum, Michael; Goldsmith, Rochelle L; Haddad, Fadia et al. (2018) Triiodothyronine and leptin repletion in humans similarly reverse weight-loss induced changes in skeletal muscle. Am J Physiol Endocrinol Metab :
Gallagher, Dympna; Rizkalla, Bridgette (2018) The 11th International Symposium on In Vivo Body Composition Studies. Eur J Clin Nutr :
Iqbal, Niloy Jafar; Lu, Zhonglei; Liu, Shun Mei et al. (2018) Cyclin-dependent kinase 4 is a preclinical target for diet-induced obesity. JCI Insight 3:
Martin Carli, Jayne F; LeDuc, Charles A; Zhang, Yiying et al. (2018) FTO mediates cell-autonomous effects on adipogenesis and adipocyte lipid content by regulating gene expression via 6mA DNA modifications. J Lipid Res 59:1446-1460
Blumenfeld, Nicole R; Kang, Hwan June; Fenzl, Anna et al. (2018) A direct tissue-grafting approach to increasing endogenous brown fat. Sci Rep 8:7957
Ravussin, Yann; Edwin, Ethan; Gallop, Molly et al. (2018) Evidence for a Non-leptin System that Defends against Weight Gain in Overfeeding. Cell Metab 28:289-299.e5
Shechter, Ari; Kim, Elijah Wookhyun; St-Onge, Marie-Pierre et al. (2018) Blocking nocturnal blue light for insomnia: A randomized controlled trial. J Psychiatr Res 96:196-202
Sui, Lina; Danzl, Nichole; Campbell, Sean R et al. (2018) ?-Cell Replacement in Mice Using Human Type 1 Diabetes Nuclear Transfer Embryonic Stem Cells. Diabetes 67:26-35
Laferrère, Blandine; Pattou, François (2018) Weight-Independent Mechanisms of Glucose Control After Roux-en-Y Gastric Bypass. Front Endocrinol (Lausanne) 9:530
Lin, Belle Yanyu; Genden, Karma; Shen, Wei et al. (2018) The prevalence of obesity and metabolic syndrome in Tibetan immigrants living in high altitude areas in Ladakh, India. Obes Res Clin Pract 12:365-371

Showing the most recent 10 out of 809 publications