Overview: This application seeks continued funding for the Washington University School of Medicine (WUSM) Nutrition Obesity Research Center (NORC). Since our NORC was first funded in 1999, it has served as a nidus for the growth and development of nutrition and obesity research at WUSM. The infrastructure provided by the NORC has created an environment that supports and stimulates cost-effective and high-quality research, collaborations between investigators, career development and training, and clinical activities in nutrition and obesity. Our NORC has a talented and diverse research base consisting of 109 investigators from 19 departments. These investigators have 179 nutrition/obesity-related grants, generating $42 million/year in direct costs. It is our intention o continue to grow nutrition and obesity-related activities, and to continue to bring state-of-the-ar basic and clinical research methods to NORC investigators. The overall research focus of the WUSM NORC has been: 1) Obesity: Pathophysiology, Complications and Therapeutics; 2) Nutrient Metabolism in Health and Disease; and 3) Growth, Development, and Aging. Newly emerging areas of major interest include: 4) Gut Microbiome and 5) Community Health. We propose an Administrative Core and 4 Biomedical Research Cores. The Clinical Science Research Core will provide assistance with: i) subject recruitment, design and performance of complex metabolic studies, ii) body composition assessments, iii) mixing of intravenous tracers and hormone solutions, iv) acquisition of tissue (adipose, muscle, intestine) samples, v) exercise (endurance and strength) and physical performance testing, vi) lifestyle (diet manipulation, weight loss and exercise) interventions, vii) ingestive behavior (taste perception and preference) testing, viii) cardiovascular assessments (e.g., echocardiography, endothelial function, carotid intima-media thickness); ix) measurement of stable isotope enrichment of metabolic substrates in blood and tissue samples, and x) mathematical modeling of tracer and non-tracer data to assess metabolic kinetics and -cell function. The Animal Model Research Core will provide services to investigators using murine models relevant to nutrition, including: i maintaining breeding colonies of genetically modified mice, ii) training in breeding and animal husbandry, iii) biochemical and molecular analyses of blood and tissue samples, iii) body composition analyses, iv) genotyping, and v) metabolic phenotyping. The Biomolecular Analyses Core will provide services to permit structural identification and quantitation of nutrition-related biomolecules in blood and tissue samples. The Adipocyte Biology and Molecular Nutrition Core will provide adipose tissue morphology, adipocyte and muscle cell lines for culture, gene and protein expression, mitochondrial physiology, and training in specialized research techniques. The collaborative and synergistic relationships among our NORC research base and our four Core laboratories will be formalized by promoting team science to further encourage interdisciplinary approaches to address important issues in nutrition and obesity. In addition, the NORC will fund 4 Pilot & Feasibility Awards/year to junior faculty and help mentor them.

Public Health Relevance

Overview: Obesity and its complications and nutrition-related diseases are a major public health problem because of their high prevalence, effect on quality-of-life and economic impact. The NORC will help reduce this burden by enhancing and stimulating cost-effective research in nutrition and obesity that will ultimately lead to improved clinical therapies and effective community interventions

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Center Core Grants (P30)
Project #
2P30DK056341-16
Application #
9095086
Study Section
Special Emphasis Panel (ZDK1)
Program Officer
Evans, Mary
Project Start
1999-09-30
Project End
2021-03-31
Budget Start
2016-04-15
Budget End
2017-03-31
Support Year
16
Fiscal Year
2016
Total Cost
Indirect Cost
Name
Washington University
Department
Internal Medicine/Medicine
Type
Schools of Medicine
DUNS #
068552207
City
Saint Louis
State
MO
Country
United States
Zip Code
63130
Xu, Wei; Mukherjee, Sumit; Ning, Yu et al. (2018) Cyclopropane fatty acid synthesis affects cell shape and acid resistance in Leishmania mexicana. Int J Parasitol 48:245-256
Wolins, Nathan E; Mittendorfer, Bettina (2018) The athlete's paradOXpat. J Physiol 596:755-756
Nicol, Ginger E; Yingling, Michael D; Flavin, Karen S et al. (2018) Metabolic Effects of Antipsychotics on Adiposity and Insulin Sensitivity in Youths: A Randomized Clinical Trial. JAMA Psychiatry 75:788-796
Dean, John M; Lodhi, Irfan J (2018) Structural and functional roles of ether lipids. Protein Cell 9:196-206
Liss, Kim H H; Lutkewitte, Andrew J; Pietka, Terri et al. (2018) Metabolic importance of adipose tissue monoacylglycerol acyltransferase 1 in mice and humans. J Lipid Res 59:1630-1639
Mayer, Allyson L; Zhang, Yiming; Feng, Emily H et al. (2018) Enhanced Hepatic PPAR? Activity Links GLUT8 Deficiency to Augmented Peripheral Fasting Responses in Male Mice. Endocrinology 159:2110-2126
Sidhu, Rohini; Mikulka, Christina R; Fujiwara, Hideji et al. (2018) A HILIC-MS/MS method for simultaneous quantification of the lysosomal disease markers galactosylsphingosine and glucosylsphingosine in mouse serum. Biomed Chromatogr 32:e4235
Son, Ni-Huiping; Basu, Debapriya; Samovski, Dmitri et al. (2018) Endothelial cell CD36 optimizes tissue fatty acid uptake. J Clin Invest 128:4329-4342
Chondronikola, Maria; Magkos, Faidon; Yoshino, Jun et al. (2018) Effect of Progressive Weight Loss on Lactate Metabolism: A Randomized Controlled Trial. Obesity (Silver Spring) 26:683-688
Howard, Nicole C; Marin, Nancy D; Ahmed, Mushtaq et al. (2018) Mycobacterium tuberculosis carrying a rifampicin drug resistance mutation reprograms macrophage metabolism through cell wall lipid changes. Nat Microbiol 3:1099-1108

Showing the most recent 10 out of 1334 publications