Cystic fibrosis investigators within the P30 Center require access to expertise and specialized equipment for their studies of CFTR expression and function. For both established CF laboratories and those new to CF research, a need has been identified for developing novel cell lines expressing mutant and wild type CFTR, and for dedicated equipment and biophysical protocols necessary to assess CFTR function. In particular, we propose two specific aims:
Specific Aim 1. Cellular models expressing wild type and mutant CFTR will be developed and provided by Core A. These will include primary cells from murine lungs and novel lentiviral-transduced cell lines. The latter include innovative cell models useful for CFTR proteomic and structural studies and for high throughput screens to discover the next generation of CF drugs.
Specific Aim 2, Assistance, equipment and expertise necessary to perform functional assays of CFTR in the above cell models (Aim 1) will include biophysical techniques (patch clamp). These assays are required to test the efficacies of new maneuvers to rescue mutant CFTR channel activity and regulation as well as to define the underlying mechanisms. The Core will aid in the development/validation of new CF cell models;provide primary murine airway epithelial cells encoding specific CFTR mutations;and assist investigators with their experiments to test the effects of new maneuvers on mutant CFTR (e.g., DeltaF508) protein stability and channel function. Collaborative studies involving proteomic studies of CFTR post-translational modifications, discovery of peptides from the first cytosolic loop of CFTR that specifically block NBD1-TMD1 binding and numerous other NIH funded projects will also be assisted by the Core. Core A will foster interdisciplinary research by providing valuable new cell models and assays of CFTR expression and function to investigators less familiar with the requisite techniques, and contribute to innovative studies of CF pathogenesis and experimental therapy.

Public Health Relevance

Cystic fibrosis (CF) is one of the most common lethal genetic disorders in this country. Currently there are no effective treatment options. This research core provides cell models and functional assays that are essential for testing, validating and refining new CF therapies being developed by P30 investigators.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Center Core Grants (P30)
Project #
5P30DK072482-07
Application #
8451288
Study Section
Special Emphasis Panel (ZDK1-GRB-7)
Project Start
Project End
Budget Start
2013-05-01
Budget End
2014-04-30
Support Year
7
Fiscal Year
2013
Total Cost
$220,042
Indirect Cost
$65,278
Name
University of Alabama Birmingham
Department
Type
DUNS #
063690705
City
Birmingham
State
AL
Country
United States
Zip Code
35294
Keating, Dominic; Marigowda, Gautham; Burr, Lucy et al. (2018) VX-445-Tezacaftor-Ivacaftor in Patients with Cystic Fibrosis and One or Two Phe508del Alleles. N Engl J Med 379:1612-1620
Tipirneni, Kiranya E; Zhang, Shaoyan; Cho, Do-Yeon et al. (2018) Submucosal gland mucus strand velocity is decreased in chronic rhinosinusitis. Int Forum Allergy Rhinol 8:509-512
Serocki, Marcin; Bartoszewska, Sylwia; Janaszak-Jasiecka, Anna et al. (2018) miRNAs regulate the HIF switch during hypoxia: a novel therapeutic target. Angiogenesis 21:183-202
Brand, Jeffrey D; Lazrak, Ahmed; Trombley, John E et al. (2018) Influenza-mediated reduction of lung epithelial ion channel activity leads to dysregulated pulmonary fluid homeostasis. JCI Insight 3:
Cho, Do-Yeon; Lim, Dong-Jin; Mackey, Calvin et al. (2018) l-Methionine anti-biofilm activity against Pseudomonas aeruginosa is enhanced by the cystic fibrosis transmembrane conductance regulator potentiator, ivacaftor. Int Forum Allergy Rhinol 8:577-583
Guimbellot, Jennifer S; Acosta, Edward P; Rowe, Steven M (2018) Sensitivity of ivacaftor to drug-drug interactions with rifampin, a cytochrome P450 3A4 inducer. Pediatr Pulmonol 53:E6-E8
Solomon, George M; Bronsveld, Inez; Hayes, Kathryn et al. (2018) Standardized Measurement of Nasal Membrane Transepithelial Potential Difference (NPD). J Vis Exp :
Reeves, Emer P; O'Dwyer, Ciara A; Dunlea, Danielle M et al. (2018) Ataluren, a New Therapeutic for Alpha-1 Antitrypsin-Deficient Individuals with Nonsense Mutations. Am J Respir Crit Care Med 198:1099-1102
McCormick, Lydia L; Phillips, Scott E; Kaza, Niroop et al. (2018) Maternal Smoking Induces Acquired CFTR Dysfunction in Neonatal Rats. Am J Respir Crit Care Med 198:672-674
Duncan, Gregg A; Kim, Namho; Colon-Cortes, Yanerys et al. (2018) An Adeno-Associated Viral Vector Capable of Penetrating the Mucus Barrier to Inhaled Gene Therapy. Mol Ther Methods Clin Dev 9:296-304

Showing the most recent 10 out of 175 publications