The UAB P30 Research and Translation Core Center consolidates a large number of externally funded cystic fibrosis (CF) research programs on our campus, building an innovative environment to pursue, advance, and train in CF-related science. During the last funding period, the P30 made robust and important contributions to multiple UAB laboratories of our Research Base of over 70 investigators pursuing research relevant to CFTR modulation, CF pathogenesis, and therapeutic translation. By virtue of the NIH Center, translational research at our Institution has greatly accelerated in the past five years, as has the breadth of investigators. The richness of CF basic science at UAB has grown in parallel with this translational expansion, providing numerous opportunities to exploit in the next funding period, and we have modified the structure of the Center accordingly to take advantage of these opportunities. The P30 Center has allowed investigators at UAB and collaborating sites to improve understanding of CF disease mechanism and has furnished novel opportunities to aggressively apply this information towards experimental therapeutics. This NIH Center includes three Biomedical Research Cores that help to organize efforts of CF faculty towards the common and essential goal of helping individuals with CF and to train the next generation of CF leaders. The Cores include: Core A: Cell Model and Assay Core (B Woodworth and GM Solomon, Co-PIs); Core B: Animal Models Core (DM Bedwell, PI); and Core C: Clinical and Translational Core (SM Rowe and A Gaggar, Co-PIs). Each Core provides leading-edge assays, specialized reagents and techniques, and valued expertise. The P30 has also engaged new investigators through a Pilot and Feasibility mechanism integral to Center vitality and has a tight integration with the UAB Center for Clinical and Translational Science, enabling a robust training environment. In addition to providing a platform from which junior and senior scientists are brought into the field, Pilot Projects serve as a means of rapidly testing exciting advances, particularly from the perspective of clinical translation. Two Pilot and Feasibility Projects are proposed: Project 1: V Thannickal, PI. ?Mucus Viscoelasticity is Mediated by Oxidase Enzymes through Oxidative Protein Crosslinking?; and Project 2: J Campos-Gomez, PI. ?Engineered PF Phage to Treat Pseudomonas aeruginosa Biofilm Infections?, capitalizing on the next era of innovative opportunities to transform the disease. Through these scientific initiatives, the P30 has added value to a collaborative environment for CF research at our Institution, and is well-positioned to continue in this capacity in the future, with a major focus on therapeutic translation.
The UAB Gregory Fleming James Cystic Fibrosis Research Center (CF Center), supported by the NIH P30, is dedicated to advancing high-impact, multidisciplinary research that heightens the field's understanding of CF disease mechanisms and accelerates the development of treatments for availability to CF patients. Success toward this goal is made possible by the Center's well-funded Research Base, robust and cutting-edge Biomedical Research Core resources and services, effective Administrative Core offerings, and successful Pilot & Feasibility and Enrichment Programs, in addition its strong commitment from the University and its role as a valuable local, national, and international clinical hub. Progress is measured by the output of innovative contributions, scientific discovery, and clinical translation designed to improve the lives of patients with the disease.
Montoro, Daniel T; Haber, Adam L; Biton, Moshe et al. (2018) A revised airway epithelial hierarchy includes CFTR-expressing ionocytes. Nature 560:319-324 |
Lutful Kabir, Farruk; Ambalavanan, Namasivayam; Liu, Gang et al. (2018) MicroRNA-145 Antagonism Reverses TGF-? Inhibition of F508del CFTR Correction in Airway Epithelia. Am J Respir Crit Care Med 197:632-643 |
Shei, Ren-Jay; Peabody, Jacelyn E; Rowe, Steven M (2018) Functional Anatomic Imaging of the Airway Surface. Ann Am Thorac Soc 15:S177-S183 |
Clancy, John Paul; Cotton, Calvin U; Donaldson, Scott H et al. (2018) CFTR modulator theratyping: Current status, gaps and future directions. J Cyst Fibros : |
Plyler, Z E; Birket, S E; Schultz, B D et al. (2018) Non-obstructive vas deferens and epididymis loss in cystic fibrosis rats. Mech Dev : |
Poore, T Spencer; Virella-Lowell, Isabel; Guimbellot, Jennifer S (2018) Potential pathogenicity of Inquilinus limosus in a pediatric patient with cystic fibrosis. Pediatr Pulmonol 53:E21-E23 |
Heltshe, Sonya L; Rowe, Steven M; Skalland, Michelle et al. (2018) Ivacaftor-treated Patients with Cystic Fibrosis Derive Long-Term Benefit Despite No Short-Term Clinical Improvement. Am J Respir Crit Care Med 197:1483-1486 |
Guimbellot, Jennifer; Solomon, George M; Baines, Arthur et al. (2018) Effectiveness of ivacaftor in cystic fibrosis patients with non-G551D gating mutations. J Cyst Fibros : |
Cho, Do-Yeon; Lim, Dong-Jin; Mackey, Calvin et al. (2018) Preclinical therapeutic efficacy of the ciprofloxacin-eluting sinus stent for Pseudomonas aeruginosa sinusitis. Int Forum Allergy Rhinol 8:482-489 |
Raju, S Vamsee; Rowe, Steven M (2018) Not simply the lesser of two evils. Am J Physiol Lung Cell Mol Physiol 314:L236-L238 |
Showing the most recent 10 out of 175 publications