We seek to establish a Diabetes Endocrinology Research Center (DERC) at Baylor College of Medicine. The DERC will promote diabetes research among a diverse biomedical research base that spans clinical metabolism and nutrition, type 1 and type 2 diabetes and their macrovascular and microvascular complications, lipid homeostasis, adipose biology and energy metabolism, basic molecular and cellular biology, molecular endocrinology, islet biology and gene therapy. Baylor College of Medicine has an extremely strong ongoing biomedical research base in diabetes/endocrinology that can be categorized into four major areas: [1] clinical diabetes research, [2] basic and translational research, [3] molecular endocrinology, and [4] adipogenesis, with membership representing 10 departments and multiple disciplines. The DERC will foster interactions and facilitate collaboration among diabetes/endocrinology researchers, and entice nondiabetes researchers to commit to diabetes research. It will interact with and strengthen existing Research Centers and NIH Training Programs at Baylor and set up new enrichment programs. With College support, the PI (Dr. Chan) set up a highly successful pilot DERC Pilot &Feasibility (P/F) Program in 2004 and, in the last two years, has used internal College funds to support 4 P/F projects selected from 78 applications (2 each from 44 applications in 2004 and 34 applications in 2006) from 10 departments. The DERC will support diabetes research through the following Research Core Laboratories: Clinical Translational Investigation, Microarray, Biostatistics and Bioinformatics, Proteomics, Gene Vector, Mouse Phenotyping, and Nonhuman Primate (in collaboration with the Southwest Foundation for Biomedical Research in San Antonio), that will support diabetes research of DERC faculty and of P/F projects. The DERC will further broaden the diabetes research base at Baylor College of Medicine, while generating strong synergism with other programs and institutions in the Texas Medical Center and in the greater Southwest United States.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Center Core Grants (P30)
Project #
5P30DK079638-04
Application #
8050069
Study Section
Special Emphasis Panel (ZDK1-GRB-S (O1))
Program Officer
Hyde, James F
Project Start
2008-03-20
Project End
2013-01-31
Budget Start
2011-02-01
Budget End
2012-01-31
Support Year
4
Fiscal Year
2011
Total Cost
$1,136,216
Indirect Cost
Name
Baylor College of Medicine
Department
Internal Medicine/Medicine
Type
Schools of Medicine
DUNS #
051113330
City
Houston
State
TX
Country
United States
Zip Code
77030
Kasper, J M; Milton, A J; Smith, A E et al. (2018) Cognitive deficits associated with a high-fat diet and insulin resistance are potentiated by overexpression of ecto-nucleotide pyrophosphatase phosphodiesterase-1. Int J Dev Neurosci 64:48-53
Scavuzzo, Marissa A; Hill, Matthew C; Chmielowiec, Jolanta et al. (2018) Endocrine lineage biases arise in temporally distinct endocrine progenitors during pancreatic morphogenesis. Nat Commun 9:3356
Koh, Eun-Hee; Chernis, Natasha; Saha, Pradip K et al. (2018) miR-30a Remodels Subcutaneous Adipose Tissue Inflammation to Improve Insulin Sensitivity in Obesity. Diabetes 67:2541-2553
Scavuzzo, Marissa A; Teaw, Jessica; Yang, Diane et al. (2018) Generation of Scaffold-free, Three-dimensional Insulin Expressing Pancreatoids from Mouse Pancreatic Progenitors In Vitro. J Vis Exp :
Sprouse, Maran L; Shevchenko, Ivan; Scavuzzo, Marissa A et al. (2018) Cutting Edge: Low-Affinity TCRs Support Regulatory T Cell Function in Autoimmunity. J Immunol 200:909-914
Gong, Yingyun; Cao, Rui; Ding, Guolian et al. (2018) Integrated omics approaches to characterize a nuclear receptor corepressor-associated histone deacetylase in mouse skeletal muscle. Mol Cell Endocrinol 471:22-32
Lam, Carol J; Cox, Aaron R; Jacobson, Daniel R et al. (2018) Highly Proliferative ?-Cell-Related Islet Endocrine Cells in Human Pancreata. Diabetes 67:674-686
Xie, Aini; Li, Rongying; Jiang, Tao et al. (2017) Anti-TCR? mAb in Combination With Neurogenin3 Gene Therapy Reverses Established Overt Type 1 Diabetes in Female NOD Mice. Endocrinology 158:3140-3151
Scavuzzo, Marissa A; Yang, Diane; Borowiak, Malgorzata (2017) Organotypic pancreatoids with native mesenchyme develop Insulin producing endocrine cells. Sci Rep 7:10810
Shi, Xuemei; Chacko, Shaji; Li, Feng et al. (2017) Acute activation of GLP-1-expressing neurons promotes glucose homeostasis and insulin sensitivity. Mol Metab 6:1350-1359

Showing the most recent 10 out of 228 publications