RESEARCH PLAN: COMPUTATIONAL OPHTHALMOLOGY MODULE OVERVIEW At UCSD, structural imaging instruments such as the spectral domain optical coherence tomography (SD-OCT) and functional instruments are used extensively in animal (Drs. Weinreb, Freeman, Yu, La Spada, Zhang, Freeman) and human studies of glaucoma (Drs. Weinreb, Ju, Lindsay, Zangwill, Medeiros, Balasubramanian) and retinal disease (Drs. Freeman, Yu, Bartsch, Zhang, Cheng). The recent development and commercialization of imaging instruments such as SD-OCT has brought a significant improvement in our ability to visualize and measure the retina in-vivo in both animals and humans. These instruments have potential to dramatically improve our ability to understand the histopathology of major eyes diseases including glaucoma, age-related macular degeneration and diabetic retinopathy. These instruments represent a generational leap forward in technological development and several orders of magnitude more data than previous instruments. The challenge facing both ophthalmic clinicians and researchers is how best to utilize the vast quantity of data to 1) enhance our understanding of the histopathology of eye diseases, and 2) identify structural biomarkers of disease and its progression toward the ultimate goal of improving patient management. The computational ophthalmology module will provide essential centralized resources to support the computationally intensive analysis of structural imaging and functional tests used in animal and human vision research studies. This module will provide dedicated computational resources with a capacity to meet high computational demands and software toolkits that leverage these computational resources so that researchers can analyze the complex and data intensive retinal datasets (imaging and functional testing) outside of the proprietary software available with each ophthalmic test.
Showing the most recent 10 out of 266 publications