The COBRE in Vascular Biology was established in 2000 with the goal of understanding the mechanisms of vascular remodeling and disease. In the past two funding periods of COBRE support, we have built a successful center of collaborative, independent cardiovascular biology researchers. Integral to our scientific progress was the establishment of institutional core facilities in areas critical to support success of our research program. The core facilities described in this application have developed into widely used institutional and regional resources that have increased scientific collaboration, the quality and impact of our research, and thus the competitiveness of our investigators. This Phase III COBRE appplication for transitional support aims to further enhance four existing core facilities towards self-sustainability, while additionally providing pilot project support to foster collaborative research using state-of-the-art strategies. The successes of this COBRE in Phases I-II included the assembly of a highly collaborative team of investigators focused on inter-related themes in vascular biology, achievement of independent extramural funding for each investigator, development of a mentoring program with input from both internal and external advisors, and the development of significant research infrastructure to support the goals of all research programs at Maine Medical Center Research Institute (MMCRI).
The specific aims of this application are: 1) to maintain mentorship and training of all Center investigators, trainees, and staff, 2) to promote a collegial, intellectually stimulating environment that fosters scientific excellence, 3) to maintain the Center at the cutting edge of vascular research through infrastructure improvements, advanced training, and financial sustainability, and 4) to stimulate collaborations and enhance grant funding opportunities through a pilot project program.
These aims will continue to advance this program towards national prominence by maintaining state-of-the art research technologies and expertise, and toward self-sufficiency through collaborative multi-investigator and program grants. Our biomedical research programs also contribute to the NIH mission to improve the nation's health, with our focus on understanding mechanisms of disease.

Public Health Relevance

Cardiovascular disease is a major cause of death and disability in the United States. A better understanding of the cellular and molecular mechanisms of vascular cell growth and differentiation will lead to better diagnostic and therapeutic approaches to combat vascular diseases. The multidisciplinary approaches taken by this group of investigators will be advanced by the core facility support proposed in this application.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Center Core Grants (P30)
Project #
5P30GM103392-03
Application #
8435447
Study Section
Special Emphasis Panel (ZRR1-RI-B (01))
Program Officer
Douthard, Regine
Project Start
2011-02-15
Project End
2016-01-31
Budget Start
2013-02-01
Budget End
2014-01-31
Support Year
3
Fiscal Year
2013
Total Cost
$1,078,230
Indirect Cost
$389,265
Name
Maine Medical Center
Department
Type
DUNS #
071732663
City
Portland
State
ME
Country
United States
Zip Code
04102
Zaidi, Mone; Yuen, Tony; Sun, Li et al. (2018) Regulation of Skeletal Homeostasis. Endocr Rev 39:701-718
Sitarski, Anna M; Fairfield, Heather; Falank, Carolyne et al. (2018) 3d Tissue Engineered In Vitro Models Of Cancer In Bone. ACS Biomater Sci Eng 4:324-336
van der Spek, Anne H; Surovtseva, Olga V; Jim, Kin Ki et al. (2018) Regulation of Intracellular Triiodothyronine Is Essential for Optimal Macrophage Function. Endocrinology 159:2241-2252
Fairfield, Heather; Falank, Carolyne; Harris, Elizabeth et al. (2018) The skeletal cell-derived molecule sclerostin drives bone marrow adipogenesis. J Cell Physiol 233:1156-1167
Karolak, Michele J; Guay, Justin A; Oxburgh, Leif (2018) Inactivation of MAP3K7 in FOXD1-expressing cells results in loss of mesangial PDGFR? and juvenile kidney scarring. Am J Physiol Renal Physiol 315:F336-F344
Stohn, J P; Martinez, M E; Zafer, M et al. (2018) Increased aggression and lack of maternal behavior in Dio3-deficient mice are associated with abnormalities in oxytocin and vasopressin systems. Genes Brain Behav 17:23-35
Guntur, Anyonya R; Gerencser, Akos A; Le, Phuong T et al. (2018) Osteoblast-like MC3T3-E1 Cells Prefer Glycolysis for ATP Production but Adipocyte-like 3T3-L1 Cells Prefer Oxidative Phosphorylation. J Bone Miner Res 33:1052-1065
van der Spek, Anne H; Jim, Kin Ki; Karaczyn, Aldona et al. (2018) The Thyroid Hormone Inactivating Type 3 Deiodinase Is Essential for Optimal Neutrophil Function: Observations From Three Species. Endocrinology 159:826-835
Ji, Yaoting; Liu, Peng; Yuen, Tony et al. (2018) Epitope-specific monoclonal antibodies to FSH? increase bone mass. Proc Natl Acad Sci U S A 115:2192-2197
Davis-Knowlton, Jessica; Turner, Jacqueline E; Turner, Anna et al. (2018) Characterization of smooth muscle cells from human atherosclerotic lesions and their responses to Notch signaling. Lab Invest :

Showing the most recent 10 out of 112 publications