This proposal is to continue the NINDS Center Core for Brain Imaging (NCCBI) at Washington University. During its five years of operation, the NCCBI has become an integral resource for the University's neuroscience community, and during this time, imaging research has continued to evolve. Neuroimaging studies have become more expansive in terms of the number of research subjects involved, the types of image acquisitions utilized in protocols, the diversity of non-imaging measures that are included, and the extent of image post-processing and analysis that is conducted. The goal of the Center in the next funding cycle is to support the evolving practices of the University's neuroimaging community. The Center will achieve the following specific aims: 1. We will facilitate high throughput, highly interdisciplinary neuroimaging research. A software and hardware infrastructure will be deployed that will unify the imaging facilities, informational resources, and analytic capabilities into an organized and secure research platform. Key components will include DICOM data exchange services, an XNAT-based imaging informatics system, and integrated automated analysis pipelines. This infrastructure will be backed with expert consultation services, comprehensive documentation, and an extensive training program. 2. We will facilitate the transition of emergent imaging and analysis methods into production-grade research assets. A set of imaging methods have been identified that have associated analysis methods that are at various stages in the development pipelines, including anatomic MRI;diffusion tensor imaging;positron emission tomography studies of flow, metabolism and radioligand binding;arterial spin labeling MRI;and quantitative blood oxygen level dependent (BOLD) MRI. Through an iterative process of optimizing, automating, and documenting, we will speed the transition of these methods into investigator-friendly applications. Together these aims encapsulate a sweeping approach to supporting the University's neuroscience community by enabling the current state of the art practices and by advancing the next generation of groundbreaking practices. The NCCBI will include Administration, Informatics, and Analysis cores to achieve these aims.

Public Health Relevance

Neuroimaging is one of the key methods used by biomedical researchers to study the brain in health and disease. The NINIDS Center Core for Brain Imaging provides core resources to investigators to facilitate their basic, translational, and clinical research into understanding neurological conditions and disease.

Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Center Core Grants (P30)
Project #
5P30NS048056-10
Application #
8585110
Study Section
National Institute of Neurological Disorders and Stroke Initial Review Group (NSD)
Program Officer
Talley, Edmund M
Project Start
2004-09-20
Project End
2014-11-30
Budget Start
2013-12-01
Budget End
2014-11-30
Support Year
10
Fiscal Year
2014
Total Cost
$646,740
Indirect Cost
$221,253
Name
Washington University
Department
Radiation-Diagnostic/Oncology
Type
Schools of Medicine
DUNS #
068552207
City
Saint Louis
State
MO
Country
United States
Zip Code
63130
Roe, Catherine M; Babulal, Ganesh M; Stout, Sarah H et al. (2018) Using the A/T/N Framework to Examine Driving in Preclinical AD. Geriatrics (Basel) 3:
Su, Yi; Flores, Shaney; Hornbeck, Russ C et al. (2018) Utilizing the Centiloid scale in cross-sectional and longitudinal PiB PET studies. Neuroimage Clin 19:406-416
Roe, Catherine M; Ances, Beau M; Head, Denise et al. (2018) Incident cognitive impairment: longitudinal changes in molecular, structural and cognitive biomarkers. Brain 141:3233-3248
Lee, Seonjoo; Zimmerman, Molly E; Narkhede, Atul et al. (2018) White matter hyperintensities and the mediating role of cerebral amyloid angiopathy in dominantly-inherited Alzheimer's disease. PLoS One 13:e0195838
Chhatwal, Jasmeer P; Schultz, Aaron P; Johnson, Keith A et al. (2018) Preferential degradation of cognitive networks differentiates Alzheimer's disease from ageing. Brain 141:1486-1500
Franzmeier, Nicolai; Düzel, Emrah; Jessen, Frank et al. (2018) Left frontal hub connectivity delays cognitive impairment in autosomal-dominant and sporadic Alzheimer's disease. Brain 141:1186-1200
Sato, Chihiro; Barthélemy, Nicolas R; Mawuenyega, Kwasi G et al. (2018) Tau Kinetics in Neurons and the Human Central Nervous System. Neuron 98:861-864
Gordon, Brian A; Blazey, Tyler M; Su, Yi et al. (2018) Spatial patterns of neuroimaging biomarker change in individuals from families with autosomal dominant Alzheimer's disease: a longitudinal study. Lancet Neurol 17:241-250
Villeneuve, Sylvia; Vogel, Jacob W; Gonneaud, Julie et al. (2018) Proximity to Parental Symptom Onset and Amyloid-? Burden in Sporadic Alzheimer Disease. JAMA Neurol 75:608-619
Sato, Chihiro; Barthélemy, Nicolas R; Mawuenyega, Kwasi G et al. (2018) Tau Kinetics in Neurons and the Human Central Nervous System. Neuron 97:1284-1298.e7

Showing the most recent 10 out of 155 publications