The routine analysis of intact proteins in basic research and clinical settings requires new separations platforms to reduce both the complexity of mixtures as well as the sample amount required. To satisfy these requirements, individual separations strategies must be optimized to reduce sample loss and increase resolution. In TR&D 1, we combine chromatographic and gel-based separation approaches to radically improve the capability of top-down proteomics. We place the new capabilities described in this TR&D at the epicenter of many of the driving biomedical projects within the National Resource for Translational and Developmental Proteomics. In two Specific Aims, we present new chromatographic methods for intact protein separations and a novel online gel-based separation for top-down proteomics called ?GelSpray?.
Specific Aim 1 a is purposefully constructed to be available within the first year of the resource, and therefore represents an incremental advance lacking the level of innovation offered in Specific Aims 1b and 2. The development of new separations platforms that are intelligently interfaced with new and improved mass spectrometric instrumentation is required by diverse DBPs to increase the depth of characterization of which topdown proteomics is capable. By more accurately separating complex mixtures prior to mass analysis, new and more lucid insights into basic biology and translational research will be returned to collaborators. Further, improvements in throughput and reductions in sample loss will make possible the scale of study required to extract meaningful results in clinical applications where sample size is small, higher numbers of technical replicates increase depth and confidence of quantitative results (c.f. TR&D 3), and sample numbers are large. In sum, these efforts are required by all of the proposed DBPs that demand high fidelity readouts of the protein content of a sample as well as quantitative information regarding protein abundance.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Biotechnology Resource Grants (P41)
Project #
5P41GM108569-02
Application #
9119130
Study Section
Special Emphasis Panel (ZRG1)
Project Start
Project End
Budget Start
2016-06-01
Budget End
2017-05-31
Support Year
2
Fiscal Year
2016
Total Cost
Indirect Cost
Name
Northwestern University at Chicago
Department
Type
DUNS #
160079455
City
Evanston
State
IL
Country
United States
Zip Code
60201
Swaroop, Alok; Oyer, Jon A; Will, Christine M et al. (2018) An activating mutation of the NSD2 histone methyltransferase drives oncogenic reprogramming in acute lymphocytic leukemia. Oncogene :
Davis, Roderick G; Park, Hae-Min; Kim, Kyunggon et al. (2018) Top-Down Proteomics Enables Comparative Analysis of Brain Proteoforms Between Mouse Strains. Anal Chem 90:3802-3810
LeDuc, Richard D; Schwämmle, Veit; Shortreed, Michael R et al. (2018) ProForma: A Standard Proteoform Notation. J Proteome Res 17:1321-1325
Aebersold, Ruedi; Agar, Jeffrey N; Amster, I Jonathan et al. (2018) How many human proteoforms are there? Nat Chem Biol 14:206-214
Turcan, Sevin; Makarov, Vladimir; Taranda, Julian et al. (2018) Mutant-IDH1-dependent chromatin state reprogramming, reversibility, and persistence. Nat Genet 50:62-72
Lyon, Yana A; Riggs, Dylan; Fornelli, Luca et al. (2018) The Ups and Downs of Repeated Cleavage and Internal Fragment Production in Top-Down Proteomics. J Am Soc Mass Spectrom 29:150-157
Fornelli, Luca; Toby, Timothy K; Schachner, Luis F et al. (2018) Top-down proteomics: Where we are, where we are going? J Proteomics 175:3-4
Fisher, Oriana S; Kenney, Grace E; Ross, Matthew O et al. (2018) Characterization of a long overlooked copper protein from methane- and ammonia-oxidizing bacteria. Nat Commun 9:4276
Gruppuso, Philip A; Boylan, Joan M; Zabala, Valerie et al. (2018) Stability of histone post-translational modifications in samples derived from liver tissue and primary hepatic cells. PLoS One 13:e0203351
Park, Yun Ji; Kenney, Grace E; Schachner, Luis F et al. (2018) Repurposed HisC Aminotransferases Complete the Biosynthesis of Some Methanobactins. Biochemistry 57:3515-3523

Showing the most recent 10 out of 53 publications