The project will develop a world-leading suite of experimental facilities for the life-science research community. With the focus on macromolecular crystallography (MX) and x-ray scattering, there will also be user programs in correlated MX and optical spectroscopy, and one in fluorescence imaging of metals in biological materials. The extraordinary brightness of NSLS-II will provide unprecedentedly small, bright, and well-collimated x-ray beams. To exploit these qualities, extra care will be exerted to provide the best quality crystal-diffraction and x-ray scattering data from the NSLS-II beams, and high levels of automation. Multiple experimental modes will be installed for x-ray scattering to investigate solutions, membranes, and tissues. We expect high success of the project, owed in part to the remarkable community of life-science researchers in the 400 mile-long corridor from Boston to Washington, all within driving distance of BNL, and to the solid record of productivity in structural biology having been provided this community during the lifetime of the NSLS.
Synchrotron x-ray sources provide the best possible structural information for biologists active in medical, and all other life-science, research. NSLS II will be the brightest source available when it comes into operation in 2015-16. This project wil provide the best possible experimental facilities to enable life scientists to employ the facility or their research.
Showing the most recent 10 out of 217 publications