Snake hemoglobins can be used as models to understand the transition by mammalian hemoglobins from their deoxygenated form to their oxygenated form. The advantage of snake hemoglobins over mutant or chemically engineered mammalian hemoglobins is that the former naturally presents many substitutions of important amino acids at the packing (a,01) and sliding (a,01) interfaces which endow them with special allosteric properties and a unique oxygen-transporting mechanism. They also present four different chains (A, B, C, and D) as opposed to only two distinct mammalian chains, a and P. The present study was conducted on Liophis milaris hemoglobin, a Brazalian semi-aquatic snake. The four hemoglobin chains, A(pl) ), B (aA), C(aD ) and D(pA), were separated, identified and characterized by RP-HPLC, amino acid analysis, Edman sequencing and enzymatic digestions by endo and exopeptidases. Sequencing results provided complete information for chains A(P), C(a) and D(P). Even though chain B((x) presented heterogeneous forms (which could not be separated by the analytical methods mentioned), sequence information was obtained for the mixture of its variants. The characterization of these variants, as well as confirmation of the sequence data, was obtained only after extensive mass spectrometric analysis.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
5P41RR000862-28
Application #
6417034
Study Section
Project Start
2000-12-01
Project End
2002-02-28
Budget Start
Budget End
Support Year
28
Fiscal Year
2001
Total Cost
Indirect Cost
Name
Rockefeller University
Department
Type
DUNS #
071037113
City
New York
State
NY
Country
United States
Zip Code
10065
Manning, Lois R; Popowicz, Anthony M; Padovan, Julio C et al. (2017) Gel filtration of dilute human embryonic hemoglobins reveals basis for their increased oxygen binding. Anal Biochem 519:38-41
Boice, Michael; Salloum, Darin; Mourcin, Frederic et al. (2016) Loss of the HVEM Tumor Suppressor in Lymphoma and Restoration by Modified CAR-T Cells. Cell 167:405-418.e13
Chait, Brian T; Cadene, Martine; Olinares, Paul Dominic et al. (2016) Revealing Higher Order Protein Structure Using Mass Spectrometry. J Am Soc Mass Spectrom 27:952-65
Krutchinsky, Andrew N; Padovan, Júlio C; Cohen, Herbert et al. (2015) Maximizing ion transmission from atmospheric pressure into the vacuum of mass spectrometers with a novel electrospray interface. J Am Soc Mass Spectrom 26:649-58
Mast, Fred D; Rachubinski, Richard A; Aitchison, John D (2015) Signaling dynamics and peroxisomes. Curr Opin Cell Biol 35:131-6
Krutchinsky, Andrew N; Padovan, Júlio C; Cohen, Herbert et al. (2015) Optimizing electrospray interfaces using slowly diverging conical duct (ConDuct) electrodes. J Am Soc Mass Spectrom 26:659-67
Oricchio, Elisa; Papapetrou, Eirini P; Lafaille, Fabien et al. (2014) A cell engineering strategy to enhance the safety of stem cell therapies. Cell Rep 8:1677-1685
Zhong, Yu; Morris, Deanna H; Jin, Lin et al. (2014) Nrbf2 protein suppresses autophagy by modulating Atg14L protein-containing Beclin 1-Vps34 complex architecture and reducing intracellular phosphatidylinositol-3 phosphate levels. J Biol Chem 289:26021-37
Xue, John Z; Woo, Eileen M; Postow, Lisa et al. (2013) Chromatin-bound Xenopus Dppa2 shapes the nucleus by locally inhibiting microtubule assembly. Dev Cell 27:47-59
Indiani, Chiara; O'Donnell, Mike (2013) A proposal: Source of single strand DNA that elicits the SOS response. Front Biosci (Landmark Ed) 18:312-23

Showing the most recent 10 out of 67 publications