This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. The subproject and investigator (PI) may have received primary funding from another NIH source, and thus could be represented in other CRISP entries. The institution listed is for the Center, which is not necessarily the institution for the investigator. [3H]luteolin binds nuclear type II [3H]estradiol binding sites covalently (Steroids 66707-719, 2001) and was used to identify the protein(s). Analyses of [3H]luteolin-labeled type II sites on SDS PAGE demonstrated specific binding to 11-kDa and 35-kDa proteins that were also detected in type II site preparations purified by C18-reversed phase HPLC. The 11-kDa protein was sequenced and identified as histone H4 and Western blotting confirmed the 11-kDa and 35-kDa proteins were acetylated forms of histone H4. Anti-histone H4 antibodies (but not H2A, H2B or H3 antibodies) immunoadsorbed type II sites from nuclear extracts and this was neutralized by specific competing peptides. Rabbit reticulocyte lysate translated histone H4, but not histones H2A, H2B or H3, demonstrated specific [3H]estradiol binding. Thus, histone H4 is the type II site and regulatory ligands such as methyl p-hydroxyphenyllactate (MeHPLA) and luteolin may control cell proliferation via modulation of hi stone H4 function.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
5P41RR000954-29
Application #
7355181
Study Section
Special Emphasis Panel (ZRG1-BPC-H (40))
Project Start
2006-02-01
Project End
2007-01-31
Budget Start
2006-02-01
Budget End
2007-01-31
Support Year
29
Fiscal Year
2006
Total Cost
$5,897
Indirect Cost
Name
Washington University
Department
Internal Medicine/Medicine
Type
Schools of Medicine
DUNS #
068552207
City
Saint Louis
State
MO
Country
United States
Zip Code
63130
Yue, Xuyi; Dhavale, Dhruva D; Li, Junfeng et al. (2018) Design, synthesis, and in vitro evaluation of quinolinyl analogues for ?-synuclein aggregation. Bioorg Med Chem Lett 28:1011-1019
Ohlemacher, Shannon I; Giblin, Daryl E; d'Avignon, D André et al. (2017) Enterobacteria secrete an inhibitor of Pseudomonas virulence during clinical bacteriuria. J Clin Invest 127:4018-4030
Lin, Xiaobo; Racette, Susan B; Ma, Lina et al. (2017) Endogenous Cholesterol Excretion Is Negatively Associated With Carotid Intima-Media Thickness in Humans. Arterioscler Thromb Vasc Biol 37:2364-2369
Ovod, Vitaliy; Ramsey, Kara N; Mawuenyega, Kwasi G et al. (2017) Amyloid ? concentrations and stable isotope labeling kinetics of human plasma specific to central nervous system amyloidosis. Alzheimers Dement 13:841-849
Cade, W Todd; Levy, Philip T; Tinius, Rachel A et al. (2017) Markers of maternal and infant metabolism are associated with ventricular dysfunction in infants of obese women with type 2 diabetes. Pediatr Res 82:768-775
Lucey, Brendan P; Mawuenyega, Kwasi G; Patterson, Bruce W et al. (2017) Associations Between ?-Amyloid Kinetics and the ?-Amyloid Diurnal Pattern in the Central Nervous System. JAMA Neurol 74:207-215
Wei, Xiaochao; Song, Haowei; Yin, Li et al. (2016) Fatty acid synthesis configures the plasma membrane for inflammation in diabetes. Nature 539:294-298
Shields-Cutler, Robin R; Crowley, Jan R; Miller, Connelly D et al. (2016) Human Metabolome-derived Cofactors Are Required for the Antibacterial Activity of Siderocalin in Urine. J Biol Chem 291:25901-25910
Mertins, Philipp; Mani, D R; Ruggles, Kelly V et al. (2016) Proteogenomics connects somatic mutations to signalling in breast cancer. Nature 534:55-62
Murata, Takahiro; Dietrich, Hans H; Horiuchi, Tetsuyoshi et al. (2016) Mechanisms of magnesium-induced vasodilation in cerebral penetrating arterioles. Neurosci Res 107:57-62

Showing the most recent 10 out of 696 publications