This subproject is one of many research subprojects utilizing theresources provided by a Center grant funded by NIH/NCRR. The subproject andinvestigator (PI) may have received primary funding from another NIH source,and thus could be represented in other CRISP entries. The institution listed isfor the Center, which is not necessarily the institution for the investigator.This project focuses on the relationship of structure to function inheme proteins. An area of particular interest is the acquisition and utilization of heme by bacterial pathogens such as Shigella dysenteriae, Neisseriae meningitidis and Corynebacterium diphtheriae. Iron is essential for the survival of all bacteria and many pathogenic bacteria have developed sophisticated mechanisms by which they utilize the hosts heme containing proteins as a source of iron. The ability of pathogenic bacteria to acquire iron is in part linked to their virulence. Understanding the mechanism of heme uptake and iron release at the molecular level will allow rational design of therapeutic agents for the treatment of bacterial infections.The expression and characterization of the outer-membrane receptor (Shu A), periplasmic binding protein (ShuT) and a heme-DNA binding hemeprotein (Shu S) from S. dysenteriae will allow characterization of the the heme transport proteins. In addition the recent expression of heme degrading enzymes from C. diphtheriae (HmuO) and Neisseriae meningitidis (HemO) have allowed the mechanism of iron release to be investigated. Site-directed mutagenesis together with biophysical techniques such as optical absorption, resonance Raman, NMR and X-ray crystallography are used to determine the structural features required for heme binding, transport and catalysis.Software available at CGL, especially Chimera, Midas and Sparky will be used extensively to analyze and view the NMR data and structures of these molecules.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
5P41RR001081-31
Application #
7723477
Study Section
Special Emphasis Panel (ZRG1-BST-D (40))
Project Start
2008-07-01
Project End
2009-06-30
Budget Start
2008-07-01
Budget End
2009-06-30
Support Year
31
Fiscal Year
2008
Total Cost
$5,792
Indirect Cost
Name
University of California San Francisco
Department
Pharmacology
Type
Schools of Pharmacy
DUNS #
094878337
City
San Francisco
State
CA
Country
United States
Zip Code
94143
Kozak, John J; Gray, Harry B; Garza-López, Roberto A (2018) Relaxation of structural constraints during Amicyanin unfolding. J Inorg Biochem 179:135-145
Alamo, Lorenzo; Pinto, Antonio; Sulbarán, Guidenn et al. (2018) Lessons from a tarantula: new insights into myosin interacting-heads motif evolution and its implications on disease. Biophys Rev 10:1465-1477
Viswanath, Shruthi; Chemmama, Ilan E; Cimermancic, Peter et al. (2017) Assessing Exhaustiveness of Stochastic Sampling for Integrative Modeling of Macromolecular Structures. Biophys J 113:2344-2353
Chu, Shidong; Zhou, Guangyan; Gochin, Miriam (2017) Evaluation of ligand-based NMR screening methods to characterize small molecule binding to HIV-1 glycoprotein-41. Org Biomol Chem 15:5210-5219
Portioli, Corinne; Bovi, Michele; Benati, Donatella et al. (2017) Novel functionalization strategies of polymeric nanoparticles as carriers for brain medications. J Biomed Mater Res A 105:847-858
Alamo, Lorenzo; Koubassova, Natalia; Pinto, Antonio et al. (2017) Lessons from a tarantula: new insights into muscle thick filament and myosin interacting-heads motif structure and function. Biophys Rev 9:461-480
Nguyen, Hai Dang; Yadav, Tribhuwan; Giri, Sumanprava et al. (2017) Functions of Replication Protein A as a Sensor of R Loops and a Regulator of RNaseH1. Mol Cell 65:832-847.e4
Sofiyev, Vladimir; Kaur, Hardeep; Snyder, Beth A et al. (2017) Enhanced potency of bivalent small molecule gp41 inhibitors. Bioorg Med Chem 25:408-420
Nekouzadeh, Ali; Rudy, Yoram (2016) Conformational changes of an ion-channel during gating and emerging electrophysiologic properties: Application of a computational approach to cardiac Kv7.1. Prog Biophys Mol Biol 120:18-27
Towse, Clare-Louise; Vymetal, Jiri; Vondrasek, Jiri et al. (2016) Insights into Unfolded Proteins from the Intrinsic ?/? Propensities of the AAXAA Host-Guest Series. Biophys J 110:348-361

Showing the most recent 10 out of 508 publications