This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. The subproject and investigator (PI) may have received primary funding from another NIH source, and thus could be represented in other CRISP entries. The institution listed is for the Center, which is not necessarily the institution for the investigator. This proposal presents a new direction for imaging transition metals in brain with direct relevance to human health. The technique of x-ray fluorescence spectroscopic mapping (XRF) is well-established but previous XRF images of metals in brain have probed a few very small tissue areas with micron-scale resolution. We propose a new approach for this field, in using a moderate resolution (50?m) and scanning a very large area in a short amount of time. As we show, such a large format image provides a wealth of information not achievable by micron-scale XRF. We build upon technology developed at SSRL by Uwe Bergmann and Martin George to enable rapid scanning of the Archimedes Palimpsest. In essence the sample is raster scanned with continuous motor motion and detectors are read on the fly with count times of ~10 msec (conventional XRF is ~1 sec). Excellent sensitivity is achievable at greatly increased scan speed. In 2006, we used this system to map physiological levels of Fe and Zn in slices of whole human and rodent brain. Building on this success, the three long-term goals of this program focus on metals in the brain with direct relevance to human health: 1. Improve the interpretation of magnetic resonance imaging (MRI);2. Understand the role of metals in neurodegeneration with a focus on Parkinson?s disease (PD), Friedreich?s ataxia (FRDA) and Wilson?s disease (WD);3. Advance the use of stem cells for brain and tissue repair.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
2P41RR001209-31
Application #
8170059
Study Section
Special Emphasis Panel (ZRG1-BCMB-P (40))
Project Start
2010-05-01
Project End
2011-02-28
Budget Start
2010-05-01
Budget End
2011-02-28
Support Year
31
Fiscal Year
2010
Total Cost
$55,264
Indirect Cost
Name
Stanford University
Department
Chemistry
Type
Schools of Arts and Sciences
DUNS #
009214214
City
Stanford
State
CA
Country
United States
Zip Code
94305
Vickers, Chelsea; Liu, Feng; Abe, Kento et al. (2018) Endo-fucoidan hydrolases from glycoside hydrolase family 107 (GH107) display structural and mechanistic similarities to ?-l-fucosidases from GH29. J Biol Chem 293:18296-18308
Nguyen, Phong T; Lai, Jeffrey Y; Lee, Allen T et al. (2018) Noncanonical role for the binding protein in substrate uptake by the MetNI methionine ATP Binding Cassette (ABC) transporter. Proc Natl Acad Sci U S A 115:E10596-E10604
Aleman, Fernando; Tzarum, Netanel; Kong, Leopold et al. (2018) Immunogenetic and structural analysis of a class of HCV broadly neutralizing antibodies and their precursors. Proc Natl Acad Sci U S A 115:7569-7574
Herrera, Nadia; Maksaev, Grigory; Haswell, Elizabeth S et al. (2018) Elucidating a role for the cytoplasmic domain in the Mycobacterium tuberculosis mechanosensitive channel of large conductance. Sci Rep 8:14566
Lal, Neeraj K; Nagalakshmi, Ugrappa; Hurlburt, Nicholas K et al. (2018) The Receptor-like Cytoplasmic Kinase BIK1 Localizes to the Nucleus and Regulates Defense Hormone Expression during Plant Innate Immunity. Cell Host Microbe 23:485-497.e5
Pluvinage, Benjamin; Grondin, Julie M; Amundsen, Carolyn et al. (2018) Molecular basis of an agarose metabolic pathway acquired by a human intestinal symbiont. Nat Commun 9:1043
Beyerlein, Kenneth R; Jönsson, H Olof; Alonso-Mori, Roberto et al. (2018) Ultrafast nonthermal heating of water initiated by an X-ray Free-Electron Laser. Proc Natl Acad Sci U S A 115:5652-5657
Yoshizawa, Takuya; Ali, Rustam; Jiou, Jenny et al. (2018) Nuclear Import Receptor Inhibits Phase Separation of FUS through Binding to Multiple Sites. Cell 173:693-705.e22
Dods, Robert; Båth, Petra; Arnlund, David et al. (2017) From Macrocrystals to Microcrystals: A Strategy for Membrane Protein Serial Crystallography. Structure 25:1461-1468.e2
de Vries, Robert P; Tzarum, Netanel; Peng, Wenjie et al. (2017) A single mutation in Taiwanese H6N1 influenza hemagglutinin switches binding to human-type receptors. EMBO Mol Med 9:1314-1325

Showing the most recent 10 out of 604 publications