[3H]-L-Selectride Reduction of 3-one-Steroid A Wyeth-Ayerst Research product contains these steroids as minor, but significant, biologically active components. In order to extend the present patent on this product, it has become critical to identify all the minor components and their bioactivity profiles. Tritiated versions of these steroids were necessary to carry out receptor binding assays and metabolic pathway studies. The most logical method of preparation of one series of components is via a hydride reduction of a ketone. The best reducing agent for this purpose is 3H-L-Selectride, available at the NTLF, which gives a 3:1 ratio of b to a isomers; the b isomer is the desired product. The other series of steroids is also prepared by hydride reduction of a ketone. The best reducing agent for this purpose is sodium borohydride which gives exclusively the desired b isomer.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
5P41RR001237-16
Application #
6119721
Study Section
Project Start
1998-08-01
Project End
2000-07-31
Budget Start
1997-10-01
Budget End
1998-09-30
Support Year
16
Fiscal Year
1998
Total Cost
Indirect Cost
Name
Lawrence Berkeley National Laboratory
Department
Type
DUNS #
078576738
City
Berkeley
State
CA
Country
United States
Zip Code
94720
Singh, Navneet; Moody, Alan R; Zhang, Bowen et al. (2017) Age-Specific Sex Differences in Magnetic Resonance Imaging-Depicted Carotid Intraplaque Hemorrhage. Stroke 48:2129-2135
Paul-Pletzer, Kalanethee; Yamamoto, Takeshi; Ikemoto, Noriaki et al. (2005) Probing a putative dantrolene-binding site on the cardiac ryanodine receptor. Biochem J 387:905-9
Wang, Huimin; Shimizu, Eiji; Tang, Ya-Ping et al. (2003) Inducible protein knockout reveals temporal requirement of CaMKII reactivation for memory consolidation in the brain. Proc Natl Acad Sci U S A 100:4287-92
Westler, William M; Frey, Perry A; Lin, Jing et al. (2002) Evidence for a strong hydrogen bond in the catalytic dyad of transition-state analogue inhibitor complexes of chymotrypsin from proton-triton NMR isotope shifts. J Am Chem Soc 124:4196-7
Paul-Pletzer, Kalanethee; Yamamoto, Takeshi; Bhat, Manjunatha B et al. (2002) Identification of a dantrolene-binding sequence on the skeletal muscle ryanodine receptor. J Biol Chem 277:34918-23
Tomizawa, M; Wen, Z; Chin, H L et al. (2001) Photoaffinity labeling of insect nicotinic acetylcholine receptors with a novel [(3)H]azidoneonicotinoid. J Neurochem 78:1359-66
Than, C; Morimoto, H; Williams, P G et al. (2001) Preparation, NMR characterization, and labeling reactions of tritiated triacetoxy sodium borohydride. J Org Chem 66:3602-5
Saljoughian, M; Williams, P G (2000) Recent developments in tritium incorporation for radiotracer studies. Curr Pharm Des 6:1029-56
Cianci, C; Yu, K L; Dischino, D D et al. (1999) pH-dependent changes in photoaffinity labeling patterns of the H1 influenza virus hemagglutinin by using an inhibitor of viral fusion. J Virol 73:1785-94
Palnitkar, S S; Bin, B; Jimenez, L S et al. (1999) [3H]Azidodantrolene: synthesis and use in identification of a putative skeletal muscle dantrolene binding site in sarcoplasmic reticulum. J Med Chem 42:1872-80

Showing the most recent 10 out of 28 publications