This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. The subproject and investigator (PI) may have received primary funding from another NIH source, and thus could be represented in other CRISP entries. The institution listed is for the Center, which is not necessarily the institution for the investigator. We are interested in investigating mechanisms underlying responses of zebrafish keratocytes to electric fields. Keratocytes are epithelial cells on fish scales. When a wound is created on fish skin, keratocytes migrate towards the wound to reform the epithelial layer. The cues for directional migration of those cells are not well characterized. We found that zebrafish keratocytes migrated towards the cathodes in electric fields in vitro. How those cells sense the electric fields is not known. Calcium is involved in cytoskeleton dynamics. Thus we want to test whether the temporal and spatial distributions of calcium ions are affected by electric fields and whether calcium dynamics is required for responses of keratocytes to electric fields. We also detected that at the wound of zebrafish skin there were outward electric currents. This indicates that endogenous electric fields exist and are involved in directing migration so keratocytes during wound healing. Our research will provide useful information for the studies on wound healing.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
5P41RR001395-24
Application #
7357364
Study Section
Special Emphasis Panel (ZRG1-BPC-H (40))
Project Start
2005-12-01
Project End
2006-11-30
Budget Start
2005-12-01
Budget End
2006-11-30
Support Year
24
Fiscal Year
2006
Total Cost
$24,505
Indirect Cost
Name
Marine Biological Laboratory
Department
Type
DUNS #
001933779
City
Woods Hole
State
MA
Country
United States
Zip Code
02543
Demidenko, Eugene; Glaholt, S P; Kyker-Snowman, E et al. (2017) Single toxin dose-response models revisited. Toxicol Appl Pharmacol 314:12-23
Chowanadisai, Winyoo; Messerli, Shanta M; Miller, Daniel H et al. (2016) Cisplatin Resistant Spheroids Model Clinically Relevant Survival Mechanisms in Ovarian Tumors. PLoS One 11:e0151089
De Martino, Federico; Moerel, Michelle; Ugurbil, Kamil et al. (2015) Less noise, more activation: Multiband acquisition schemes for auditory functional MRI. Magn Reson Med 74:462-7
Van Mooy, Benjamin A S; Hmelo, Laura R; Fredricks, Helen F et al. (2014) Quantitative exploration of the contribution of settlement, growth, dispersal and grazing to the accumulation of natural marine biofilms on antifouling and fouling-release coatings. Biofouling 30:223-36
Brodsky, Alexander S; Fischer, Andrew; Miller, Daniel H et al. (2014) Expression profiling of primary and metastatic ovarian tumors reveals differences indicative of aggressive disease. PLoS One 9:e94476
De Martino, Federico; Zimmermann, Jan; Muckli, Lars et al. (2013) Cortical depth dependent functional responses in humans at 7T: improved specificity with 3D GRASE. PLoS One 8:e60514
De Martino, Federico; Moerel, Michelle; van de Moortele, Pierre-Francois et al. (2013) Spatial organization of frequency preference and selectivity in the human inferior colliculus. Nat Commun 4:1386
Vang, Souriya; Wu, Hsin-Ta; Fischer, Andrew et al. (2013) Identification of ovarian cancer metastatic miRNAs. PLoS One 8:e58226
Chowanadisai, Winyoo; Graham, David M; Keen, Carl L et al. (2013) Neurulation and neurite extension require the zinc transporter ZIP12 (slc39a12). Proc Natl Acad Sci U S A 110:9903-8
Graham, David M; Messerli, Mark A; Pethig, Ronald (2012) Spatial manipulation of cells and organelles using single electrode dielectrophoresis. Biotechniques 52:39-43

Showing the most recent 10 out of 144 publications