Parkinson's disease, the second most common neurodegenerative disorder, is marked by progressive dysfunction and loss of nigral dopaminergic neurons. This cardinal feature is accompanied by the accumulation of protein inclusions in dopaminergic neurons and their processes (Lewy bodies and neurites), the major constituent of which is a-synuclein (aS). aS has 7 repeats resembling the lipid-binding a-helical domains of apolipoproteins, and its bindingto phospholipid membranes markedly alters its secondary structure. We have recently: a) discovered homologies of aS with the fatty acid (FA) binding protein (FABP) family;b) found that pure aS binds free FAs reversibly;c) detected a pool of highly soluble, lipid-associated aS oligomers in dopaminergic cells, normal mouse and human brains and, at elevated levels, in PD and DLB brains;d) shown that exposure of living mesencephalic neurons to polyunsaturated FAs enhances ~ and to saturated FAs retards ~ the formation of soluble aS oligomers;and e) documented increased endogenous PUFA levels and membrane fluidity in aS-overexpressing neurons, and the opposite in aS knock-out mice. Based on these findings, we hypothesize that aS normally interacts with FAs in both the aqueous and membrane-phospholipid compartments of the cytoplasm and helps regulate aspects of lipid composition (particularly PUFA content) and thus membrane properties, and that aS-FA interactions help regulate the oligomerization of aS and can thus initiate aS assembly into first soluble and then insoluble oligomers. To pursue this molecular hypothesis about aS function and dysfunction,we now propose a series of interrelated goals. 1) To attempt to prove that altering endogenous PUFA levels (e.g., lowered in cells treated with a A6desaturase inhibitor or elevated in mice modeling Zellweger's syndrome) induces corresponding decreases or increases in endogenous aS oligomers in brain cells. 2). To examine the effects of aS-FA interactions on the formation, ultrastructure and biophysical properties of membrane vesicles in living cells. 3) To ascertain whether and how PUFA-ctS interactions affect the one discrete biochemical function of aS documented to date: inhibitingPhospholipase D. Our focus on a key role for aS in lipid metabolism and membrane vesicle formation/stability derives from a novel set of observations made by the two principal investigators. Moreover, it is strongly supported by recent unbiased genetic screens in aS-expressing yeast or Drosophila that implicated a function of aS in lipid regulation and membrane trafficking. New findingsemanating from this grant should simultaneously shed light on the physiology of aS and the earliest steps in its pathological oligomerization, with attendant therapeutic insights.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
5P41RR001395-27
Application #
7558982
Study Section
Special Emphasis Panel (ZRG1-BPC-H (40))
Program Officer
Levy, Abraham
Project Start
1997-12-01
Project End
2010-11-30
Budget Start
2008-12-01
Budget End
2010-11-30
Support Year
27
Fiscal Year
2009
Total Cost
$1,119,532
Indirect Cost
Name
Marine Biological Laboratory
Department
Type
DUNS #
001933779
City
Woods Hole
State
MA
Country
United States
Zip Code
02543
Demidenko, Eugene; Glaholt, S P; Kyker-Snowman, E et al. (2017) Single toxin dose-response models revisited. Toxicol Appl Pharmacol 314:12-23
Chowanadisai, Winyoo; Messerli, Shanta M; Miller, Daniel H et al. (2016) Cisplatin Resistant Spheroids Model Clinically Relevant Survival Mechanisms in Ovarian Tumors. PLoS One 11:e0151089
De Martino, Federico; Moerel, Michelle; Ugurbil, Kamil et al. (2015) Less noise, more activation: Multiband acquisition schemes for auditory functional MRI. Magn Reson Med 74:462-7
Van Mooy, Benjamin A S; Hmelo, Laura R; Fredricks, Helen F et al. (2014) Quantitative exploration of the contribution of settlement, growth, dispersal and grazing to the accumulation of natural marine biofilms on antifouling and fouling-release coatings. Biofouling 30:223-36
Brodsky, Alexander S; Fischer, Andrew; Miller, Daniel H et al. (2014) Expression profiling of primary and metastatic ovarian tumors reveals differences indicative of aggressive disease. PLoS One 9:e94476
De Martino, Federico; Zimmermann, Jan; Muckli, Lars et al. (2013) Cortical depth dependent functional responses in humans at 7T: improved specificity with 3D GRASE. PLoS One 8:e60514
De Martino, Federico; Moerel, Michelle; van de Moortele, Pierre-Francois et al. (2013) Spatial organization of frequency preference and selectivity in the human inferior colliculus. Nat Commun 4:1386
Vang, Souriya; Wu, Hsin-Ta; Fischer, Andrew et al. (2013) Identification of ovarian cancer metastatic miRNAs. PLoS One 8:e58226
Chowanadisai, Winyoo; Graham, David M; Keen, Carl L et al. (2013) Neurulation and neurite extension require the zinc transporter ZIP12 (slc39a12). Proc Natl Acad Sci U S A 110:9903-8
Graham, David M; Messerli, Mark A; Pethig, Ronald (2012) Spatial manipulation of cells and organelles using single electrode dielectrophoresis. Biotechniques 52:39-43

Showing the most recent 10 out of 144 publications