This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. The subproject and investigator (PI) may have received primary funding from another NIH source, and thus could be represented in other CRISP entries. The institution listed is for the Center, which is not necessarily the institution for the investigator. This research goal was to uncover the physiological relevance of an acidic motif that occurs within the N-terminal domain of an invertebrate accessory beta subunit of voltage-gated calcium channels . Specifically, this acidic motif dampens the amplitude of the calcium current. This suppressive effect is more pronounced in the presence of intracellular NaCl or Mg-ATP, but not in the presence of non-chelated ATP, suggesting that the function of the acidic motif is sensitive to the ionic composition of the intracellular solution. From January to May (2008) I started exploring the relationships between the structure and function of this acidic motif. To this end, I generated several deletion mutants of this beta subunit that differ in the length of the acidic motif. Mutants lacking a few acidic residues of the motif still have a significant effect in dampening the calcium current, whereas mutants lacking a significant portion of the acidic motif have relatively low influence on the amplitude of the calcium current. At UPenn, this work continues exploring the relationships between structure, function and physiology of the acidic motif of this calcium channel beta subunit expressed by Schistosoma mansoni, using biochemical and electrophysiological approaches. Hopefully, these studies will contribute to the understanding of the biology and physiology of this human pathogen.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
5P41RR001395-27
Application #
7953863
Study Section
Special Emphasis Panel (ZRG1-BPC-H (40))
Project Start
2008-12-01
Project End
2009-11-30
Budget Start
2008-12-01
Budget End
2009-11-30
Support Year
27
Fiscal Year
2009
Total Cost
$22,391
Indirect Cost
Name
Marine Biological Laboratory
Department
Type
DUNS #
001933779
City
Woods Hole
State
MA
Country
United States
Zip Code
02543
Demidenko, Eugene; Glaholt, S P; Kyker-Snowman, E et al. (2017) Single toxin dose-response models revisited. Toxicol Appl Pharmacol 314:12-23
Chowanadisai, Winyoo; Messerli, Shanta M; Miller, Daniel H et al. (2016) Cisplatin Resistant Spheroids Model Clinically Relevant Survival Mechanisms in Ovarian Tumors. PLoS One 11:e0151089
De Martino, Federico; Moerel, Michelle; Ugurbil, Kamil et al. (2015) Less noise, more activation: Multiband acquisition schemes for auditory functional MRI. Magn Reson Med 74:462-7
Van Mooy, Benjamin A S; Hmelo, Laura R; Fredricks, Helen F et al. (2014) Quantitative exploration of the contribution of settlement, growth, dispersal and grazing to the accumulation of natural marine biofilms on antifouling and fouling-release coatings. Biofouling 30:223-36
Brodsky, Alexander S; Fischer, Andrew; Miller, Daniel H et al. (2014) Expression profiling of primary and metastatic ovarian tumors reveals differences indicative of aggressive disease. PLoS One 9:e94476
De Martino, Federico; Zimmermann, Jan; Muckli, Lars et al. (2013) Cortical depth dependent functional responses in humans at 7T: improved specificity with 3D GRASE. PLoS One 8:e60514
De Martino, Federico; Moerel, Michelle; van de Moortele, Pierre-Francois et al. (2013) Spatial organization of frequency preference and selectivity in the human inferior colliculus. Nat Commun 4:1386
Vang, Souriya; Wu, Hsin-Ta; Fischer, Andrew et al. (2013) Identification of ovarian cancer metastatic miRNAs. PLoS One 8:e58226
Chowanadisai, Winyoo; Graham, David M; Keen, Carl L et al. (2013) Neurulation and neurite extension require the zinc transporter ZIP12 (slc39a12). Proc Natl Acad Sci U S A 110:9903-8
Graham, David M; Messerli, Mark A; Pethig, Ronald (2012) Spatial manipulation of cells and organelles using single electrode dielectrophoresis. Biotechniques 52:39-43

Showing the most recent 10 out of 144 publications