This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. The subproject and investigator (PI) may have received primary funding from another NIH source, and thus could be represented in other CRISP entries. The institution listed is for the Center, which is not necessarily the institution for the investigator. The global spread of tuberculosis (TB) has been aggravated by the development of strains of the causative bacterium Mycobacterium tuberculosis (Mtb) that are resistant to the leading drugs. New TB therapies are urgently needed, but fortunately recent genome sequence, genetic and protein characterization studies have helped identify novel Mtb drug targets and key biochemical pathways for strategic intervention. In this regard, genes that code for lipid metabolism are a very important part of the bacterial genome, and 8% of the genome is involved in this activity. Of particular interest in the present context are the multiple cytochromes P450 (P450) encoded in the Mtb genome, whose biological roles are not yet understood. To date, physiological roles have been proposed for CYP125 CYP142 and CYP51 in sterol metabolism and for CYP132 in fatty acid metabolism, but none of these roles has been established. In this project, we are elucidating the function(s) of Mtb P450 enzymes, including CYP125, CYP130, CYP141, and CYP142 by comparative analyses of the global lipid profiles of normal Mtb and strains in which the individual P450 enzymes have been knocked out. This comparison will be carried out using Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS). The availability of knockout strains for these P450s makes possible a direct comparison of the lipidomic profiles under different growth and labeling conditions.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
2P41RR001614-28
Application #
8169785
Study Section
Special Emphasis Panel (ZRG1-BCMB-M (40))
Project Start
2010-09-12
Project End
2011-05-31
Budget Start
2010-09-12
Budget End
2011-05-31
Support Year
28
Fiscal Year
2010
Total Cost
$1,766
Indirect Cost
Name
University of California San Francisco
Department
Pharmacology
Type
Schools of Pharmacy
DUNS #
094878337
City
San Francisco
State
CA
Country
United States
Zip Code
94143
MacRae, Andrew J; Mayerle, Megan; Hrabeta-Robinson, Eva et al. (2018) Prp8 positioning of U5 snRNA is linked to 5' splice site recognition. RNA 24:769-777
Katsuno, Yoko; Qin, Jian; Oses-Prieto, Juan et al. (2018) Arginine methylation of SMAD7 by PRMT1 in TGF-?-induced epithelial-mesenchymal transition and epithelial stem-cell generation. J Biol Chem 293:13059-13072
Sahoo, Pabitra K; Smith, Deanna S; Perrone-Bizzozero, Nora et al. (2018) Axonal mRNA transport and translation at a glance. J Cell Sci 131:
Tran, Vy M; Wade, Anna; McKinney, Andrew et al. (2017) Heparan Sulfate Glycosaminoglycans in Glioblastoma Promote Tumor Invasion. Mol Cancer Res 15:1623-1633
Liu, Tzu-Yu; Huang, Hector H; Wheeler, Diamond et al. (2017) Time-Resolved Proteomics Extends Ribosome Profiling-Based Measurements of Protein Synthesis Dynamics. Cell Syst 4:636-644.e9
Bikle, Daniel D (2016) Extraskeletal actions of vitamin D. Ann N Y Acad Sci 1376:29-52
Twiss, Jeffery L; Fainzilber, Mike (2016) Neuroproteomics: How Many Angels can be Identified in an Extract from the Head of a Pin? Mol Cell Proteomics 15:341-3
Cil, Onur; Phuan, Puay-Wah; Lee, Sujin et al. (2016) CFTR activator increases intestinal fluid secretion and normalizes stool output in a mouse model of constipation. Cell Mol Gastroenterol Hepatol 2:317-327
Posch, Christian; Sanlorenzo, Martina; Vujic, Igor et al. (2016) Phosphoproteomic Analyses of NRAS(G12) and NRAS(Q61) Mutant Melanocytes Reveal Increased CK2? Kinase Levels in NRAS(Q61) Mutant Cells. J Invest Dermatol 136:2041-2048
Julien, Olivier; Zhuang, Min; Wiita, Arun P et al. (2016) Quantitative MS-based enzymology of caspases reveals distinct protein substrate specificities, hierarchies, and cellular roles. Proc Natl Acad Sci U S A 113:E2001-10

Showing the most recent 10 out of 630 publications