This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. The subproject and investigator (PI) may have received primary funding from another NIH source, and thus could be represented in other CRISP entries. The institution listed is for the Center, which is not necessarily the institution for the investigator. Transcription factor TFIID is a multi-subunit complex responsible for targeting and nucleating the assembly of RNA polymerase II and other associated factors to promoter start sites in eukaryotic organisms. It is important for the regulation of gene expression. Mis-regulation of gene expression can cause developmental defects, metabolic disorders, and cancer. Understanding the mechanism of transcriptional initiation is an important goal, and structural information about TFIID would contribute towards this end. The TFIID complex is estimated to contain 1.1-1.2 MDa of protein contributed from 15 individual subunits. Structural information for this large complex has been difficult to obtain due to expression and solubility problems for the isolated subunits and difficulty in obtaining sufficient material. Our goal has been to extend on negative stain electron microscopy studies of the yeast TFIID complex carried out by the group of P. Schultz using Tandem Affinity Purification (TAP-tag) isolated material. We will obtain cryo-EM reconstructions of the TFIID complex. This data will be used in our efforts to obtaining a high-resolution X-ray crystal structure. It would be of particular interest to further characterize the interactions of TFIID with other known basal factors using cryo-EM to further reveal the spatial relationships between the various components of the RNA Polymerase II transcription system at promoters.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
5P41RR002250-24
Application #
7953770
Study Section
Special Emphasis Panel (ZRG1-BPC-K (40))
Project Start
2008-12-01
Project End
2009-11-30
Budget Start
2008-12-01
Budget End
2009-11-30
Support Year
24
Fiscal Year
2009
Total Cost
$26,081
Indirect Cost
Name
Baylor College of Medicine
Department
Physiology
Type
Schools of Medicine
DUNS #
051113330
City
Houston
State
TX
Country
United States
Zip Code
77030
Bucero, Marta Abril; Bajaj, Chandrajit; Mourrain, Bernard (2016) On the construction of general cubature formula by flat extensions. Linear Algebra Appl 502:104-125
Ebeida, Mohamed S; Rushdi, Ahmad A; Awad, Muhammad A et al. (2016) Disk Density Tuning of a Maximal Random Packing. Comput Graph Forum 35:259-269
Wensel, Theodore G; Zhang, Zhixian; Anastassov, Ivan A et al. (2016) Structural and molecular bases of rod photoreceptor morphogenesis and disease. Prog Retin Eye Res 55:32-51
Baker, Mariah R; Fan, Guizhen; Serysheva, Irina I (2015) Single-Particle Cryo-EM of the Ryanodine Receptor Channel in an Aqueous Environment. Eur J Transl Myol 25:4803
Rushdi, Ahmad A; Mitchell, Scott A; Bajaj, Chandrajit L et al. (2015) Robust All-quad Meshing of Domains with Connected Regions. Procedia Eng 124:96-108
Edwards, John; Daniel, Eric; Pascucci, Valerio et al. (2015) Approximating the Generalized Voronoi Diagram of Closely Spaced Objects. Comput Graph Forum 34:299-309
Wensel, Theodore G; Gilliam, Jared C (2015) Three-dimensional architecture of murine rod cilium revealed by cryo-EM. Methods Mol Biol 1271:267-92
Jeter, Cameron B; Patel, Saumil S; Morris, Jeffrey S et al. (2015) Oculomotor executive function abnormalities with increased tic severity in Tourette syndrome. J Child Psychol Psychiatry 56:193-202
Zhang, Qin; Cha, Deukhyun; Bajaj, Chandrajit (2015) Quality Partitioned Meshing of Multi-Material Objects. Procedia Eng 124:187-199
Baker, Mariah R; Fan, Guizhen; Serysheva, Irina I (2015) Single-particle cryo-EM of the ryanodine receptor channel in an aqueous environment. Eur J Transl Myol 25:35-48

Showing the most recent 10 out of 213 publications