This subproject is one of many research subprojects utilizing theresources provided by a Center grant funded by NIH/NCRR. The subproject andinvestigator (PI) may have received primary funding from another NIH source,and thus could be represented in other CRISP entries. The institution listed isfor the Center, which is not necessarily the institution for the investigator.Proteins can contain disulfide bonds or metal centers which can unfortunately oxidize over time when manipulated in vitro. The purpose of this project is to synthetize a compound that is a better oxidizer than those compounds currently available or an oxidizer that is more active in a pH range not now available. A compound must be both a good oxidizer and be soluble in water.Multiple isotope effects were measured at the reactive center of formamide during acid-catalyzed hydrolysis in water at 25 C. The mechanism involves a rapid pre-equilibrium protonation of the carbonyl oxygen, followed by the formation of at least one symmetrical tetrahedral intermediate, which does not appreciably exchange its carbonyl oxygen with the solvent (kh/kex = 55). The pKa for formamide was determined by 15N NMR and found to be about -2.0. The formyl hydrogen kinetic isotope effect- is indicative of a transition state that is highly tetrahedral (Dkobs = 0.79); the carbonyl carbon kinetic isotope effect (13kobs = 1.031) is in agreement with this conclusion. The small leaving nitrogen kinetic isotope effect (15kobs = 1.0050) is consistent with some step prior to breaking the C-N bond as rate-determining. The carbonyl oxygen kinetic isotope effect (18kobs = 0.996) points to attack of water as the rate-determining step. On the basis of these results a mechanism is proposed in which attachment of the nucleophile to a protonated formamide molecule is rate-determining.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
5P41RR002301-22
Application #
7598714
Study Section
Special Emphasis Panel (ZRG1-BCMB-E (40))
Project Start
2007-03-01
Project End
2008-02-29
Budget Start
2007-03-01
Budget End
2008-02-29
Support Year
22
Fiscal Year
2007
Total Cost
$85
Indirect Cost
Name
University of Wisconsin Madison
Department
Biochemistry
Type
Schools of Earth Sciences/Natur
DUNS #
161202122
City
Madison
State
WI
Country
United States
Zip Code
53715
Travers, Timothy; López, Cesar A; Van, Que N et al. (2018) Molecular recognition of RAS/RAF complex at the membrane: Role of RAF cysteine-rich domain. Sci Rep 8:8461
Thomas, Nathan E; Wu, Chao; Morrison, Emma A et al. (2018) The C terminus of the bacterial multidrug transporter EmrE couples drug binding to proton release. J Biol Chem 293:19137-19147
Assadi-Porter, Fariba M; Radek, James; Rao, Hongyu et al. (2018) Multimodal Ligand Binding Studies of Human and Mouse G-Coupled Taste Receptors to Correlate Their Species-Specific Sweetness Tasting Properties. Molecules 23:
Wijayatunga, Nadeeja N; Sams, Valerie G; Dawson, John A et al. (2018) Roux-en-Y gastric bypass surgery alters serum metabolites and fatty acids in patients with morbid obesity. Diabetes Metab Res Rev 34:e3045
Assadi-Porter, Fariba M; Reiland, Hannah; Sabatini, Martina et al. (2018) Metabolic Reprogramming by 3-Iodothyronamine (T1AM): A New Perspective to Reverse Obesity through Co-Regulation of Sirtuin 4 and 6 Expression. Int J Mol Sci 19:
Dominguez, Eddie; Zarnowski, Robert; Sanchez, Hiram et al. (2018) Conservation and Divergence in the Candida Species Biofilm Matrix Mannan-Glucan Complex Structure, Function, and Genetic Control. MBio 9:
Franco, Aldo; Dovell, Sanaz; Möller, Carolina et al. (2018) Structural plasticity of mini-M conotoxins - expression of all mini-M subtypes by Conus regius. FEBS J 285:887-902
Wales, Jessica A; Chen, Cheng-Yu; Breci, Linda et al. (2018) Discovery of stimulator binding to a conserved pocket in the heme domain of soluble guanylyl cyclase. J Biol Chem 293:1850-1864
Selen Alpergin, Ebru S; Bolandnazar, Zeinab; Sabatini, Martina et al. (2017) Metabolic profiling reveals reprogramming of lipid metabolic pathways in treatment of polycystic ovary syndrome with 3-iodothyronamine. Physiol Rep 5:
Mong, Surin K; Cochran, Frank V; Yu, Hongtao et al. (2017) Heterochiral Knottin Protein: Folding and Solution Structure. Biochemistry 56:5720-5725

Showing the most recent 10 out of 613 publications