The biosynthesis of N-glycans involves the stepwise removal of glucose and mannose residues in the endoplasmic reticulum and the Golgi complex. The mannose trimming events are initiated by members of a multigene family of a1,2-mannosidases that are temporally and spatially expressed in distinctive cell types in mammalian tissues. We have cloned six members of the a1,2-mannosidase multigene family and are presently carrying out detailed structural studies on one of the family members. The cDNA encoding murine Golgi a-mannosidase IA was subcloned into a vector for the inducible expression of the cDNA in the methylotropic yeast, Pichia pastoris. Enzyme expression was induced by culturing the cells in a methanol-containing medium, and the enzyme has been isolated and purified in milligram quantities from the culture medium. The homogeneous enzyme preparation has been subjected to initial screening of crystallization conditions, and initial microcrystals have been obtained. We are presently isolating additional enzyme for large scale crystallization studies and structure determined by X-ray diffraction. These studies would represent the first determination of the structure of a mammalian Golgi-processing enzyme and could lead to greater insight into the structural basis for the differences in substrate specificities among the Class I a-mannosidases.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
5P41RR005351-08
Application #
5225042
Study Section
Project Start
Project End
Budget Start
Budget End
Support Year
8
Fiscal Year
1996
Total Cost
Indirect Cost
Hannides, Angelos K; Aller, Robert C (2016) Priming effect of benthic gastropod mucus on sedimentary organic matter remineralization. Limnol Oceanogr 61:1640-1650
Revoredo, Leslie; Wang, Shengjun; Bennett, Eric Paul et al. (2016) Mucin-type O-glycosylation is controlled by short- and long-range glycopeptide substrate recognition that varies among members of the polypeptide GalNAc transferase family. Glycobiology 26:360-76
Zhao, Wujun; Zhu, Taotao; Cheng, Rui et al. (2016) Label-Free and Continuous-Flow Ferrohydrodynamic Separation of HeLa Cells and Blood Cells in Biocompatible Ferrofluids. Adv Funct Mater 26:3990-3998
Wu, Liang; Viola, Cristina M; Brzozowski, Andrzej M et al. (2015) Structural characterization of human heparanase reveals insights into substrate recognition. Nat Struct Mol Biol 22:1016-22
Qiu, Hong; Xiao, Wenyuan; Yue, Jingwen et al. (2015) Heparan sulfate modulates Slit3-induced endothelial cell migration. Methods Mol Biol 1229:549-55
Li, Zixuan; Moniz, Heather; Wang, Shuo et al. (2015) High structural resolution hydroxyl radical protein footprinting reveals an extended Robo1-heparin binding interface. J Biol Chem 290:10729-40
Czuchry, Diana; Desormeaux, Paul; Stuart, Melissa et al. (2015) Identification and Biochemical Characterization of the Novel ?2,3-Sialyltransferase WbwA from Pathogenic Escherichia coli Serotype O104. J Bacteriol 197:3760-8
Liu, Lin; Zha, Jingying; DiGiandomenico, Antonio et al. (2015) Synthetic Enterobacterial Common Antigen (ECA) for the Development of a Universal Immunotherapy for Drug-Resistant Enterobacteriaceae. Angew Chem Int Ed Engl 54:10953-7
Zhang, Fuming; Moniz, Heather A; Walcott, Benjamin et al. (2014) Probing the impact of GFP tagging on Robo1-heparin interaction. Glycoconj J 31:299-307
Zarnowski, Robert; Westler, William M; Lacmbouh, Ghislain Ade et al. (2014) Novel entries in a fungal biofilm matrix encyclopedia. MBio 5:e01333-14

Showing the most recent 10 out of 245 publications