This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. The subproject and investigator (PI) may have received primary funding from another NIH source, and thus could be represented in other CRISP entries. The institution listed is for the Center, which is not necessarily the institution for the investigator. LpxA catalyzes the first step in the synthesis of lipid-A, the addition of an acyl-chain to the sugar donor, UDP-GlcNAc. Lipid-A is a glycolipid that is both a potent endotoxin and a required component of cell walls of gram negative bacteria. The latter requirement makes the enzyme a target for the development of anti-bacterial drugs. The glycolipid product makes the system an appropriate target for technology developed in this Research Resource. In the first phase of this project, we undertook a structural characterization of the interaction geometry of LpxA with the acyl-chain donating protein, acyl-carrier protein (ACP). Characterization using residual dipolar coupling (RDC) data, coupled with known structures for the individual proteins, proved successful despite the large size of the complex (~100 kDa). Results have been reported in the literature (Jain, Raetz, Wycoff, Prestegard, J. Mol. Biol., 343: 1379-1389, 2004). Objectives have now turned to the interaction geometry of LpxA and the sugar donor. These studies will again be based on orientational constraints coming from RDC measurements as developed in the Resource, but will be supplemented with more traditional saturation transfer difference (STD) and transfer NOE (trNOE) measurements.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
5P41RR005351-17
Application #
7358166
Study Section
Special Emphasis Panel (ZRG1-BNP (40))
Project Start
2006-02-01
Project End
2007-01-31
Budget Start
2006-02-01
Budget End
2007-01-31
Support Year
17
Fiscal Year
2006
Total Cost
$1,430
Indirect Cost
Name
University of Georgia
Department
Type
Organized Research Units
DUNS #
004315578
City
Athens
State
GA
Country
United States
Zip Code
30602
Hannides, Angelos K; Aller, Robert C (2016) Priming effect of benthic gastropod mucus on sedimentary organic matter remineralization. Limnol Oceanogr 61:1640-1650
Revoredo, Leslie; Wang, Shengjun; Bennett, Eric Paul et al. (2016) Mucin-type O-glycosylation is controlled by short- and long-range glycopeptide substrate recognition that varies among members of the polypeptide GalNAc transferase family. Glycobiology 26:360-76
Zhao, Wujun; Zhu, Taotao; Cheng, Rui et al. (2016) Label-Free and Continuous-Flow Ferrohydrodynamic Separation of HeLa Cells and Blood Cells in Biocompatible Ferrofluids. Adv Funct Mater 26:3990-3998
Wu, Liang; Viola, Cristina M; Brzozowski, Andrzej M et al. (2015) Structural characterization of human heparanase reveals insights into substrate recognition. Nat Struct Mol Biol 22:1016-22
Qiu, Hong; Xiao, Wenyuan; Yue, Jingwen et al. (2015) Heparan sulfate modulates Slit3-induced endothelial cell migration. Methods Mol Biol 1229:549-55
Li, Zixuan; Moniz, Heather; Wang, Shuo et al. (2015) High structural resolution hydroxyl radical protein footprinting reveals an extended Robo1-heparin binding interface. J Biol Chem 290:10729-40
Czuchry, Diana; Desormeaux, Paul; Stuart, Melissa et al. (2015) Identification and Biochemical Characterization of the Novel ?2,3-Sialyltransferase WbwA from Pathogenic Escherichia coli Serotype O104. J Bacteriol 197:3760-8
Liu, Lin; Zha, Jingying; DiGiandomenico, Antonio et al. (2015) Synthetic Enterobacterial Common Antigen (ECA) for the Development of a Universal Immunotherapy for Drug-Resistant Enterobacteriaceae. Angew Chem Int Ed Engl 54:10953-7
Zarnowski, Robert; Westler, William M; Lacmbouh, Ghislain Ade et al. (2014) Novel entries in a fungal biofilm matrix encyclopedia. MBio 5:e01333-14
Zhang, Bing; Xiao, Wenyuan; Qiu, Hong et al. (2014) Heparan sulfate deficiency disrupts developmental angiogenesis and causes congenital diaphragmatic hernia. J Clin Invest 124:209-21

Showing the most recent 10 out of 245 publications