This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. The subproject and investigator (PI) may have received primary funding from another NIH source, and thus could be represented in other CRISP entries. The institution listed is for the Center, which is not necessarily the institution for the investigator. The overall goal of this work is to determine if deuterated water can be used as a suitable in vivo surrogate marker for the distribution of drugs delivered into the intracerebral compartment by convection- enhanced delivery. Specific goals of this project are to develop a coil suitable for measuring deuterated water in in vitro systems, small and large animals systems, and ultimately in humans. Our laboratory has pioneered work on convection-enhanced delivery of therapeutic molecules into the brain in patients with malignant gliomas. Convection-enhanced delivery is a novel technique that percolates drug throught brain parenchyma via a small catheter using a pressure head that exceeds interstitual pressures without causing tissue disruption. We previously studied distribution of these molecules using 123I-labeled albumin injected by us into animals and humans with brain tumors. This demonstrated that convection-enhanced delivery is a promising technique for delivering drugs at homogenous concentrations for broad distances throughout the brain. We learned, however, that the parameters of drug distribution are important to ensure adequate coverage of areas at risk for tumor recurrence. Because I123I-labeled albumin is expensive, and the resolution of SPECT scanning is poor, newer tracers are needed to further optimize these studies and validate our computer algorhythm for catheter placement and distribution prediction. By using deuterated water, we hope to accomplish a high-resolution method of tracking the distribution of these agents in the human brain. We would be able to develop these studies based on our existing IND and clinical protocol for infusing I123-labeled albumin. Furthermore, deuterated water would be a more convenient and broadly applicable substance for combining with the various drugs that may ultimately be applied in this clinical scenario.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
5P41RR005959-17
Application #
7358294
Study Section
Special Emphasis Panel (ZRG1-SSS-X (40))
Project Start
2006-07-01
Project End
2007-06-30
Budget Start
2006-07-01
Budget End
2007-06-30
Support Year
17
Fiscal Year
2006
Total Cost
$10,252
Indirect Cost
Name
Duke University
Department
Radiation-Diagnostic/Oncology
Type
Schools of Medicine
DUNS #
044387793
City
Durham
State
NC
Country
United States
Zip Code
27705
Tang, Xinyan; Jing, Liufang; Richardson, William J et al. (2016) Identifying molecular phenotype of nucleus pulposus cells in human intervertebral disc with aging and degeneration. J Orthop Res 34:1316-26
Hodgkinson, Conrad P; Bareja, Akshay; Gomez, José A et al. (2016) Emerging Concepts in Paracrine Mechanisms in Regenerative Cardiovascular Medicine and Biology. Circ Res 118:95-107
Schmeckpeper, Jeffrey; Verma, Amanda; Yin, Lucy et al. (2015) Inhibition of Wnt6 by Sfrp2 regulates adult cardiac progenitor cell differentiation by differential modulation of Wnt pathways. J Mol Cell Cardiol 85:215-25
Roos, Justus E; McAdams, Holman P; Kaushik, S Sivaram et al. (2015) Hyperpolarized Gas MR Imaging: Technique and Applications. Magn Reson Imaging Clin N Am 23:217-29
He, Mu; Robertson, Scott H; Kaushik, S Sivaram et al. (2015) Dose and pulse sequence considerations for hyperpolarized (129)Xe ventilation MRI. Magn Reson Imaging 33:877-85
Huang, Lingling; Walter, Vonn; Hayes, D Neil et al. (2014) Hedgehog-GLI signaling inhibition suppresses tumor growth in squamous lung cancer. Clin Cancer Res 20:1566-75
Huang, Jing; Guo, Jian; Beigi, Farideh et al. (2014) HASF is a stem cell paracrine factor that activates PKC epsilon mediated cytoprotection. J Mol Cell Cardiol 66:157-64
Yuan, Ying; Gilmore, John H; Geng, Xiujuan et al. (2014) FMEM: functional mixed effects modeling for the analysis of longitudinal white matter Tract data. Neuroimage 84:753-64
He, Mu; Kaushik, S Sivaram; Robertson, Scott H et al. (2014) Extending semiautomatic ventilation defect analysis for hyperpolarized (129)Xe ventilation MRI. Acad Radiol 21:1530-41
Liu, Chunlei; Li, Wei (2013) Imaging neural architecture of the brain based on its multipole magnetic response. Neuroimage 67:193-202

Showing the most recent 10 out of 239 publications