This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. The subproject and investigator (PI) may have received primary funding from another NIH source, and thus could be represented in other CRISP entries. The institution listed is for the Center, which is not necessarily the institution for the investigator. Our program correlates X-ray diffraction (glycerinated native fibers) and thin-section EM tomography (fibers quick-frozen &freeze-substituted) to characterize structure, arrangement and dynamic choreography of myosin crossbridges (motor molecules of muscle) in a waterbug insect flight muscle (IFM) of unexcelled crystalline regularity. X-ray results will be supported and checked by parallel EM on fibers quick-frozen during the same state or maneuver, to image structures directly. (IFM gives the clearest EM images of myosin crossbridges of any muscle.) IFM X-ray patterns differ significantly from those of other striated muscles (frog skeletal) studied by XRD, reflecting different filament lattice packing, filament helical geometry, and full-overlap sarcomeres limited to 3-5% length changes. X-ray reflections (to ~5 nm) attributable to myosin filaments, actin filaments, and both jointly, are as well worked out as in frog muscle, and we are catching up regarding dynamic (contraction) states. Thanks to the beam quality, intensity and detector systems at APS/BioCAT, much of the catch-up with frog muscle studies can be done in another 2 years. We propose here to measure diffraction patterns from wet & frozen IFM, relating graded x-ray signals of crossbridge binding and tropomyosin movement to [Ca2+]-dependent force levels &to time-dependent rise of stretch-activated force, dissect incremental crossbridge braking and force-holding structural responses, time-resolve crossbridge angle changes and myofilament elasticity by x-ray interference (collaborator HE Huxley), and to correlate the findings of SAXS cryo-diffraction and EM of the same or parallel quick-frozen IFM fibers.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
5P41RR008630-14
Application #
7954891
Study Section
Special Emphasis Panel (ZRG1-BCMB-E (40))
Project Start
2009-01-01
Project End
2009-12-31
Budget Start
2009-01-01
Budget End
2009-12-31
Support Year
14
Fiscal Year
2009
Total Cost
$65,238
Indirect Cost
Name
Illinois Institute of Technology
Department
Other Basic Sciences
Type
Schools of Arts and Sciences
DUNS #
042084434
City
Chicago
State
IL
Country
United States
Zip Code
60616
Orgel, Joseph P R O; Sella, Ido; Madhurapantula, Rama S et al. (2017) Molecular and ultrastructural studies of a fibrillar collagen from octocoral (Cnidaria). J Exp Biol 220:3327-3335
Yazdi, Aliakbar Khalili; Vezina, Grant C; Shilton, Brian H (2017) An alternate mode of oligomerization for E. coli SecA. Sci Rep 7:11747
Sullivan, Brendan; Robison, Gregory; Pushkar, Yulia et al. (2017) Copper accumulation in rodent brain astrocytes: A species difference. J Trace Elem Med Biol 39:6-13
Morris, Martha Clare (2016) Nutrition and risk of dementia: overview and methodological issues. Ann N Y Acad Sci 1367:31-7
Robison, Gregory; Sullivan, Brendan; Cannon, Jason R et al. (2015) Identification of dopaminergic neurons of the substantia nigra pars compacta as a target of manganese accumulation. Metallomics 7:748-55
Gelfand, Paul; Smith, Randy J; Stavitski, Eli et al. (2015) Characterization of Protein Structural Changes in Living Cells Using Time-Lapsed FTIR Imaging. Anal Chem 87:6025-31
Liang, Wenguang G; Ren, Min; Zhao, Fan et al. (2015) Structures of human CCL18, CCL3, and CCL4 reveal molecular determinants for quaternary structures and sensitivity to insulin-degrading enzyme. J Mol Biol 427:1345-1358
Zhou, Hao; Li, Shangyang; Badger, John et al. (2015) Modulation of HIV protease flexibility by the T80N mutation. Proteins 83:1929-39
Witayavanitkul, Namthip; Ait Mou, Younss; Kuster, Diederik W D et al. (2014) Myocardial infarction-induced N-terminal fragment of cardiac myosin-binding protein C (cMyBP-C) impairs myofilament function in human myocardium. J Biol Chem 289:8818-27
Poor, Catherine B; Wegner, Seraphine V; Li, Haoran et al. (2014) Molecular mechanism and structure of the Saccharomyces cerevisiae iron regulator Aft2. Proc Natl Acad Sci U S A 111:4043-8

Showing the most recent 10 out of 100 publications