This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. The subproject and investigator (PI) may have received primary funding from another NIH source, and thus could be represented in other CRISP entries. The institution listed is for the Center, which is not necessarily the institution for the investigator. Despite decades of imaging research, the brain basis of major depression remains ill-defined. Limited understanding of the underlying mechanisms has resulted in a trial and error approach to treatment which can result in prolonged delays and exposure to potentially avoidable side-effects. This study proposes using a novel imaging approach, resting-state functional connectivity to 1) enhance our understanding of the brain bases of the affective and cognitive symptoms of depression and 2) develop an objective fMRI biomarker of depression that will predict response to treatment before or shortly after starting an antidepressant. Using independent component analysis of resting-state fMRI data, functional connectivity will be assessed separately in three brain networks that we have previously related to mood, anxiety, and executive function. Thirty drug-free patients with depression will be scanned at baseline, at one week, and at eight weeks after treatment with citalopram. Brain network connectivity in the baseline depressed state will be compared to network connectivity in thirty healthy controls using a two-sample t-test. Baseline network connectivity in the depressed subjects will be correlated against measures of mood, anxiety, and cognition to explore relationships between distinct networks and distinct symptoms of depression. Baseline scans of responders and non-responders will be compared using a two-sample t-test to search for patterns of brain network connectivity that can predict treatment response or failure. Finally, paired t-tests, performed separately in responders and non-responders, will compare changes in network connectivity between the baseline scan and the one-week and eight-week scans to determine if early network changes seen at one week can predict subsequent clinical outcome at eight weeks. Meeting the goals of this study will advance our understanding of the brain bases of depression and allow for concrete clinical applications of fMRI in its treatment.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
2P41RR009784-16
Application #
8169868
Study Section
Special Emphasis Panel (ZRG1-SBIB-U (40))
Project Start
2010-07-01
Project End
2011-03-31
Budget Start
2010-07-01
Budget End
2011-03-31
Support Year
16
Fiscal Year
2010
Total Cost
$12,333
Indirect Cost
Name
Stanford University
Department
Radiation-Diagnostic/Oncology
Type
Schools of Medicine
DUNS #
009214214
City
Stanford
State
CA
Country
United States
Zip Code
94305
Maclaren, Julian; Aksoy, Murat; Ooi, Melvyn B et al. (2018) Prospective motion correction using coil-mounted cameras: Cross-calibration considerations. Magn Reson Med 79:1911-1921
Guo, Jia; Holdsworth, Samantha J; Fan, Audrey P et al. (2018) Comparing accuracy and reproducibility of sequential and Hadamard-encoded multidelay pseudocontinuous arterial spin labeling for measuring cerebral blood flow and arterial transit time in healthy subjects: A simulation and in vivo study. J Magn Reson Imaging 47:1119-1132
Tamir, Jonathan I; Uecker, Martin; Chen, Weitian et al. (2017) T2 shuffling: Sharp, multicontrast, volumetric fast spin-echo imaging. Magn Reson Med 77:180-195
Lai, Lillian M; Cheng, Joseph Y; Alley, Marcus T et al. (2017) Feasibility of ferumoxytol-enhanced neonatal and young infant cardiac MRI without general anesthesia. J Magn Reson Imaging 45:1407-1418
Taviani, Valentina; Alley, Marcus T; Banerjee, Suchandrima et al. (2017) High-resolution diffusion-weighted imaging of the breast with multiband 2D radiofrequency pulses and a generalized parallel imaging reconstruction. Magn Reson Med 77:209-220
Uecker, Martin; Lustig, Michael (2017) Estimating absolute-phase maps using ESPIRiT and virtual conjugate coils. Magn Reson Med 77:1201-1207
Kogan, Feliks; Hargreaves, Brian A; Gold, Garry E (2017) Volumetric multislice gagCEST imaging of articular cartilage: Optimization and comparison with T1rho. Magn Reson Med 77:1134-1141
Aksoy, Murat; Maclaren, Julian; Bammer, Roland (2017) Prospective motion correction for 3D pseudo-continuous arterial spin labeling using an external optical tracking system. Magn Reson Imaging 39:44-52
Bian, W; Tranvinh, E; Tourdias, T et al. (2016) In Vivo 7T MR Quantitative Susceptibility Mapping Reveals Opposite Susceptibility Contrast between Cortical and White Matter Lesions in Multiple Sclerosis. AJNR Am J Neuroradiol 37:1808-1815
Vos, Sjoerd B; Aksoy, Murat; Han, Zhaoying et al. (2016) Trade-off between angular and spatial resolutions in in vivo fiber tractography. Neuroimage 129:117-132

Showing the most recent 10 out of 446 publications