This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. The subproject and investigator (PI) may have received primary funding from another NIH source, and thus could be represented in other CRISP entries. The institution listed is for the Center, which is not necessarily the institution for the investigator. Large-scale proteomic analyses necessitate high-throughput sample preparation techniques. However, highly complex mixtures require multi-dimensional fractionation prior to MS analysis to maximize the yield of useful MS data. This geometrically expands sample numbers, dramatically intensifying processing load, commonly involves dilution (e.g., HPLC), often demanding sample concentration, and typically requires multiple steps of sample handling, including transfer to different reaction vessels. These steps are time consuming, lead to sample losses and potential contamination. We have explored the use of a novel, simple, inexpensive (non-robotic) 96-well array technology, the BD MALDI Concentrator, to conduct one-pot on-target sample preparation for MALDI-MS analysis. We have applied this technology with deposition from 1D and 2D protein LC direct-to-target for peptide mapping by MALDI-TOF MS. 1D and 2D-HPLC fractionation of protein mixtures is conducted with a Beckman PF2D system. Fractions can be collected directly into the wells of the BD device, and optimized conditions are used to concentrate, digest in-solution on-target/in-well, and co-crystallize the samples with matrix. MALDI mass spectra are obtained with a Bruker Reflex IV MALDI-TOF MS. Results are compared,to other sample handling methods. One-pot on-target/in-well digestion, concentration and sample/matrix co-crystallization under optimized solvent conditions readily yields good quality mass spectra from as little as 10 fmol of peptide standards from up to 200 ?l starting solution. The coupling of 1D and 2D-protein-LC to MALDI-TOF MS through the collection of LC fractions directly into the 96-well array concentrator enables rapid, high-throughput protein fractionation, digestion, peptide matrix co-crystallization, and MALDI-TOF MS analyses with minimal sample handling. The method is now being applied to proteomic projects of the Resource and the CPC and the results are being evaluated to generate further refinements of the procedures.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
5P41RR010888-13
Application #
7955914
Study Section
Special Emphasis Panel (ZRG1-BCMB-H (40))
Project Start
2009-06-01
Project End
2010-05-31
Budget Start
2009-06-01
Budget End
2010-05-31
Support Year
13
Fiscal Year
2009
Total Cost
$3,581
Indirect Cost
Name
Boston University
Department
Biochemistry
Type
Schools of Medicine
DUNS #
604483045
City
Boston
State
MA
Country
United States
Zip Code
02118
Lu, Yanyan; Jiang, Yan; Prokaeva, Tatiana et al. (2017) Oxidative Post-Translational Modifications of an Amyloidogenic Immunoglobulin Light Chain Protein. Int J Mass Spectrom 416:71-79
Sethi, Manveen K; Zaia, Joseph (2017) Extracellular matrix proteomics in schizophrenia and Alzheimer's disease. Anal Bioanal Chem 409:379-394
Hu, Han; Khatri, Kshitij; Zaia, Joseph (2017) Algorithms and design strategies towards automated glycoproteomics analysis. Mass Spectrom Rev 36:475-498
Ji, Yuhuan; Bachschmid, Markus M; Costello, Catherine E et al. (2016) S- to N-Palmitoyl Transfer During Proteomic Sample Preparation. J Am Soc Mass Spectrom 27:677-85
Hu, Han; Khatri, Kshitij; Klein, Joshua et al. (2016) A review of methods for interpretation of glycopeptide tandem mass spectral data. Glycoconj J 33:285-96
Pu, Yi; Ridgeway, Mark E; Glaskin, Rebecca S et al. (2016) Separation and Identification of Isomeric Glycans by Selected Accumulation-Trapped Ion Mobility Spectrometry-Electron Activated Dissociation Tandem Mass Spectrometry. Anal Chem 88:3440-3
Wang, Yun Hwa Walter; Meyer, Rosana D; Bondzie, Philip A et al. (2016) IGPR-1 Is Required for Endothelial Cell-Cell Adhesion and Barrier Function. J Mol Biol 428:5019-5033
Srinivasan, Srimathi; Chitalia, Vipul; Meyer, Rosana D et al. (2015) Hypoxia-induced expression of phosducin-like 3 regulates expression of VEGFR-2 and promotes angiogenesis. Angiogenesis 18:449-62
Yu, Xiang; Sargaeva, Nadezda P; Thompson, Christopher J et al. (2015) In-Source Decay Characterization of Isoaspartate and ?-Peptides. Int J Mass Spectrom 390:101-109
Steinhorn, Benjamin S; Loscalzo, Joseph; Michel, Thomas (2015) Nitroglycerin and Nitric Oxide--A Rondo of Themes in Cardiovascular Therapeutics. N Engl J Med 373:277-80

Showing the most recent 10 out of 253 publications