This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. The subproject and investigator (PI) may have received primary funding from another NIH source, and thus could be represented in other CRISP entries. The institution listed is for the Center, which is not necessarily the institution for the investigator. Recent experiments have yielded an abundance of novel non-coding RNAs. We have recently developed a cloning strategy for the identification of RNA molecules with terminal 2',3'cyclic phosphates. Cyclic phosphates are pervasive in biology: all known natural ribozymes leave cyclic phosphate termini, and novel self-cleaving ribozymes isolated from human genomic libraries allude to the presence of additional ribozymes in human and other genomes. In addition, tRNA and tRNA-like splicing events, spontaneous autolysis and some ribonuclease cleavage events result in cyclic phosphate termini. To facilitate the study of this RNA class, we have developed a method for the identification of RNA molecules with 3'terminal cyclic phosphates. The method employs the tRNA ligase from Arabadopsis thaliana to selectively ligate RNAs with cyclic phosphates to an adaptor molecule, enabling their selective amplification. Importantly, previous methods employing T4 RNA ligase for cature do not capture cyclic phosphate-terminated RNAs, leaving this RNA class unexplored. We have completed proof-of-principle experiments which demonstrate the selective capture of these molecules, and have also shown that the system can capture HAC1 splicing intermediates from yeast cells undergoing the unfolded protein response. In the future, we plan to use this method for identifying self-cleaving ribozymes from human total RNA preparations.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
5P41RR011823-14
Application #
7957711
Study Section
Special Emphasis Panel (ZRG1-CB-H (40))
Project Start
2009-09-01
Project End
2010-08-31
Budget Start
2009-09-01
Budget End
2010-08-31
Support Year
14
Fiscal Year
2009
Total Cost
$54,594
Indirect Cost
Name
University of Washington
Department
Biochemistry
Type
Schools of Medicine
DUNS #
605799469
City
Seattle
State
WA
Country
United States
Zip Code
98195
Hollmann, Taylor; Kim, Tae Kwon; Tirloni, Lucas et al. (2018) Identification and characterization of proteins in the Amblyomma americanum tick cement cone. Int J Parasitol 48:211-224
Stieg, David C; Willis, Stephen D; Ganesan, Vidyaramanan et al. (2018) A complex molecular switch directs stress-induced cyclin C nuclear release through SCFGrr1-mediated degradation of Med13. Mol Biol Cell 29:363-375
Seixas, Adriana; Alzugaray, María Fernanda; Tirloni, Lucas et al. (2018) Expression profile of Rhipicephalus microplus vitellogenin receptor during oogenesis. Ticks Tick Borne Dis 9:72-81
Wang, Zheng; Wu, Catherine; Aslanian, Aaron et al. (2018) Defective RNA polymerase III is negatively regulated by the SUMO-Ubiquitin-Cdc48 pathway. Elife 7:
Xavier, Marina Amaral; Tirloni, Lucas; Pinto, Antônio F M et al. (2018) A proteomic insight into vitellogenesis during tick ovary maturation. Sci Rep 8:4698
Luhtala, Natalie; Aslanian, Aaron; Yates 3rd, John R et al. (2017) Secreted Glioblastoma Nanovesicles Contain Intracellular Signaling Proteins and Active Ras Incorporated in a Farnesylation-dependent Manner. J Biol Chem 292:611-628
Thakar, Sonal; Wang, Liqing; Yu, Ting et al. (2017) Evidence for opposing roles of Celsr3 and Vangl2 in glutamatergic synapse formation. Proc Natl Acad Sci U S A 114:E610-E618
Jin, Meiyan; Fuller, Gregory G; Han, Ting et al. (2017) Glycolytic Enzymes Coalesce in G Bodies under Hypoxic Stress. Cell Rep 20:895-908
Ogami, Koichi; Richard, Patricia; Chen, Yaqiong et al. (2017) An Mtr4/ZFC3H1 complex facilitates turnover of unstable nuclear RNAs to prevent their cytoplasmic transport and global translational repression. Genes Dev 31:1257-1271
Ju Lee, Hyun; Bartsch, Deniz; Xiao, Cally et al. (2017) A post-transcriptional program coordinated by CSDE1 prevents intrinsic neural differentiation of human embryonic stem cells. Nat Commun 8:1456

Showing the most recent 10 out of 583 publications