This subproject is one of many research subprojects utilizing theresources provided by a Center grant funded by NIH/NCRR. The subproject andinvestigator (PI) may have received primary funding from another NIH source,and thus could be represented in other CRISP entries. The institution listed isfor the Center, which is not necessarily the institution for the investigator.Damage to DNA by endogenous and exogenous agents are the major cause of genetic mutations that give rise to different forms of cancer if the damage remains uncorrected. Nucleotide Excision Repair (NER) is one of the major DNA repair pathways functioning in both eukaryotes and prokaryotes. The NER system recognizes and repairs a broad spectrum of DNA lesions, such as cis-syn thymine dimers caused by UV light, bulky benzo[a]pyrene diol epoxide(BPDE) guanine adducts, and cis-Pt adducts.The NER system in bacteria consists of three major proteins, UvrA, UvrB, and UvrC, all of which are essential for successful damage correction. UvrA, which has strong affinity to damaged sites in DNA, has a key role in the recognition process. It also has a domain that interacts with UvrB. UvrA recognizes the site of damage, facilitates the interaction between UvrB and DNA, and then leaves the damaged site. UvrB forms a stable complex with DNA, followed by the recruitment of catalytic UvrC, which cleaves the 4th phosphodiester bond at 3' end of the lesion, and then the 8th phosphodiester bond at 5' end of the lesion. Interestingly, without UvrA, UvrB or UvrC do not have any affinity to damaged DNA. Although this repair pathway has been known for decades, only UvrB and domain structures of UvrC are available to date. In this project, our goal is to obtain crystal structures of nucleotide excision repair enzymes.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
2P41RR015301-06A1
Application #
7721193
Study Section
Special Emphasis Panel (ZRG1-BCMB-K (40))
Project Start
2008-05-15
Project End
2009-03-31
Budget Start
2008-05-15
Budget End
2009-03-31
Support Year
6
Fiscal Year
2008
Total Cost
$10,589
Indirect Cost
Name
Cornell University
Department
Chemistry
Type
Schools of Arts and Sciences
DUNS #
872612445
City
Ithaca
State
NY
Country
United States
Zip Code
14850
Chen, Wenyang; Mandali, Sridhar; Hancock, Stephen P et al. (2018) Multiple serine transposase dimers assemble the transposon-end synaptic complex during IS607-family transposition. Elife 7:
Eichhorn, Catherine D; Yang, Yuan; Repeta, Lucas et al. (2018) Structural basis for recognition of human 7SK long noncoding RNA by the La-related protein Larp7. Proc Natl Acad Sci U S A 115:E6457-E6466
Fallas, Jorge A; Ueda, George; Sheffler, William et al. (2017) Computational design of self-assembling cyclic protein homo-oligomers. Nat Chem 9:353-360
Krotee, Pascal; Rodriguez, Jose A; Sawaya, Michael R et al. (2017) Atomic structures of fibrillar segments of hIAPP suggest tightly mated ?-sheets are important for cytotoxicity. Elife 6:
Dhayalan, Balamurugan; Mandal, Kalyaneswar; Rege, Nischay et al. (2017) Scope and Limitations of Fmoc Chemistry SPPS-Based Approaches to the Total Synthesis of Insulin Lispro via Ester Insulin. Chemistry 23:1709-1716
Bale, Jacob B; Gonen, Shane; Liu, Yuxi et al. (2016) Accurate design of megadalton-scale two-component icosahedral protein complexes. Science 353:389-94
AhYoung, Andrew P; Koehl, Antoine; Vizcarra, Christina L et al. (2016) Structure of a putative ClpS N-end rule adaptor protein from the malaria pathogen Plasmodium falciparum. Protein Sci 25:689-701
Hancock, Stephen P; Stella, Stefano; Cascio, Duilio et al. (2016) DNA Sequence Determinants Controlling Affinity, Stability and Shape of DNA Complexes Bound by the Nucleoid Protein Fis. PLoS One 11:e0150189
Kattke, Michele D; Chan, Albert H; Duong, Andrew et al. (2016) Crystal Structure of the Streptomyces coelicolor Sortase E1 Transpeptidase Provides Insight into the Binding Mode of the Novel Class E Sorting Signal. PLoS One 11:e0167763
Jorda, J; Leibly, D J; Thompson, M C et al. (2016) Structure of a novel 13 nm dodecahedral nanocage assembled from a redesigned bacterial microcompartment shell protein. Chem Commun (Camb) 52:5041-4

Showing the most recent 10 out of 407 publications