This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. The subproject and investigator (PI) may have received primary funding from another NIH source, and thus could be represented in other CRISP entries. The institution listed is for the Center, which is not necessarily the institution for the investigator. The synaptic vesicle-associated protein, alpha-synuclein, is linked to both sporadic and familial Parkinson's disease through its appearance in Lewy bodies and through several genetic polymorphisms that lead to early onset of disease. Alpha-synuclein is intrinsically unstructured in solution, but it undergoes conformational changes to a predominantly ?-helical structure upon association with lipid membranes. The functional conformation of this protein was shown to be the membrane bound form. Global fold of this protein was difficult to study by NMR because of luck in the proximis between subunits. Moreover, learning the structural aspect of protein-membrane interactions is not an easy task in general. The rapidly developing methods of NMR, such as TROSY, and pulsed dipolar ESR spectroscopy (PDS) are poised to address the challenges of measuring a wide range of distances ranging from a small fraction to tens or even hundreds of nanometers. Resent PDS study on ?-synuclein elucidated in considerable details the structure of the protein in the context of detergent (SDS) and lyophospholipid micelles. It was shown that PDS provides high resolution and distances can be measured with a reasonable accuracy. This study reveals the presence of two membrane bound ?-helices separated by a short linker. However, obtained data suggest the non-helical break between the helices may result from the spatial confinement of the micelle system.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
5P41RR016292-10
Application #
8172180
Study Section
Special Emphasis Panel (ZRG1-BCMB-K (40))
Project Start
2010-09-01
Project End
2011-08-31
Budget Start
2010-09-01
Budget End
2011-08-31
Support Year
10
Fiscal Year
2010
Total Cost
$3,915
Indirect Cost
Name
Cornell University
Department
Chemistry
Type
Schools of Arts and Sciences
DUNS #
872612445
City
Ithaca
State
NY
Country
United States
Zip Code
14850
Jain, Rinku; Vanamee, Eva S; Dzikovski, Boris G et al. (2014) An iron-sulfur cluster in the polymerase domain of yeast DNA polymerase ?. J Mol Biol 426:301-8
Pratt, Ashley J; Shin, David S; Merz, Gregory E et al. (2014) Aggregation propensities of superoxide dismutase G93 hotspot mutants mirror ALS clinical phenotypes. Proc Natl Acad Sci U S A 111:E4568-76
Georgieva, Elka R; Borbat, Peter P; Ginter, Christopher et al. (2013) Conformational ensemble of the sodium-coupled aspartate transporter. Nat Struct Mol Biol 20:215-21
Airola, Michael V; Sukomon, Nattakan; Samanta, Dipanjan et al. (2013) HAMP domain conformers that propagate opposite signals in bacterial chemoreceptors. PLoS Biol 11:e1001479
Airola, Michael V; Huh, Doowon; Sukomon, Nattakan et al. (2013) Architecture of the soluble receptor Aer2 indicates an in-line mechanism for PAS and HAMP domain signaling. J Mol Biol 425:886-901
Sun, Yan; Zhang, Ziwei; Grigoryants, Vladimir M et al. (2012) The internal dynamics of mini c TAR DNA probed by electron paramagnetic resonance of nitroxide spin-labels at the lower stem, the loop, and the bulge. Biochemistry 51:8530-41
Smith, Andrew K; Freed, Jack H (2012) Dynamics and ordering of lipid spin-labels along the coexistence curve of two membrane phases: an ESR study. Chem Phys Lipids 165:348-61
Yu, Renyuan Pony; Darmon, Jonathan M; Hoyt, Jordan M et al. (2012) High-Activity Iron Catalysts for the Hydrogenation of Hindered, Unfunctionalized Alkenes. ACS Catal 2:1760-1764
Gaffney, Betty J; Bradshaw, Miles D; Frausto, Stephen D et al. (2012) Locating a lipid at the portal to the lipoxygenase active site. Biophys J 103:2134-44
Dzikovski, Boris; Tipikin, Dmitriy; Freed, Jack (2012) Conformational distributions and hydrogen bonding in gel and frozen lipid bilayers: a high frequency spin-label ESR study. J Phys Chem B 116:6694-706

Showing the most recent 10 out of 72 publications