Miniaturized biosensors can enable the toxicology projects to undertake their assays with high throughput and potentially with greater sensitivity. The Biosensor project aims to implement those bio assays that have been developed in the toxicology projects into usable biosensors. The project will have a fundamental aspect, and an applied aspect in which we intend to implement these assays. The fundamental aspects will investigate new nano scale materials for bio labeling, particularly with application to immunoassays. Long lifetime nano scale phosphors have been found to be particularly useful for labeling haptens, analytes, or antibodies in an immunoassay. We will focus on the use of the lanthanide elements, in particular europium, and also other wavelengths that can be offered by the use of materials such as terbium oxide. We shall also investigate a novel format for carrying out immunoassays in a micro droplet. Samples that contain pico liters can be interrogated for very long times with our photobleaching labels, with the potential for approaching single molecule detection limits in assays. The more practical aspect of the project will be concerned with implementing existing assays in miniaturized biosensors on a chip. We shall make use of micro fabrication techniques to make micro channels on a chip in which we shall carry out the immunoassays. We shall make use of indium tin oxide (ITO) films as waveguides and as electrodes to manipulate nanoparticles labels and antibodies in channels. We shall use evanescent detection of the particle labels within the channel, and use an electrostatic field to enhance binding to antibodies, and potentially to regenerate antibodies within the channel. We shall also attempt to improve the detection of DNA for sampling in soils. This will assist Project 1 in undertaking their measurements of toxin-consuming bacteria within soils. The Biosensor project will implement an in vitro assay for dioxin for use in Dr. Denison's project and will work with Dr. Lasley's project to implement a miniaturized, portable biosensor for markers of reproductive health.

Agency
National Institute of Health (NIH)
Institute
National Institute of Environmental Health Sciences (NIEHS)
Type
Hazardous Substances Basic Research Grants Program (NIEHS) (P42)
Project #
5P42ES004699-21
Application #
7391800
Study Section
Special Emphasis Panel (ZES1)
Project Start
Project End
Budget Start
2007-04-01
Budget End
2008-03-31
Support Year
21
Fiscal Year
2007
Total Cost
$207,856
Indirect Cost
Name
University of California Davis
Department
Type
DUNS #
047120084
City
Davis
State
CA
Country
United States
Zip Code
95618
Minaz, Nathani; Razdan, Rema; Hammock, Bruce D et al. (2018) An inhibitor of soluble epoxide hydrolase ameliorates diabetes-induced learning and memory impairment in rats. Prostaglandins Other Lipid Mediat 136:84-89
Lassabe, Gabriel; Kramer, Karl; Hammock, Bruce D et al. (2018) Noncompetitive Homogeneous Detection of Small Molecules Using Synthetic Nanopeptamer-Based Luminescent Oxygen Channeling. Anal Chem 90:6187-6192
?ertíková Chábová, V?ra; Kujal, Petr; Škaroupková, Petra et al. (2018) Combined Inhibition of Soluble Epoxide Hydrolase and Renin-Angiotensin System Exhibits Superior Renoprotection to Renin-Angiotensin System Blockade in 5/6 Nephrectomized Ren-2 Transgenic Hypertensive Rats with Established Chronic Kidney Disease. Kidney Blood Press Res 43:329-349
Kodani, Sean D; Bhakta, Saavan; Hwang, Sung Hee et al. (2018) Identification and optimization of soluble epoxide hydrolase inhibitors with dual potency towards fatty acid amide hydrolase. Bioorg Med Chem Lett 28:762-768
Rand, Amy A; Helmer, Patrick O; Inceoglu, Bora et al. (2018) LC-MS/MS Analysis of the Epoxides and Diols Derived from the Endocannabinoid Arachidonoyl Ethanolamide. Methods Mol Biol 1730:123-133
Li, Xueshu; Holland, Erika B; Feng, Wei et al. (2018) Authentication of synthetic environmental contaminants and their (bio)transformation products in toxicology: polychlorinated biphenyls as an example. Environ Sci Pollut Res Int 25:16508-16521
Mao, Yuxin; Pan, Yang; Li, Xuan et al. (2018) High-precision digital droplet pipetting enabled by a plug-and-play microfluidic pipetting chip. Lab Chip 18:2720-2729
Burmistrov, Vladimir; Morisseau, Christophe; Harris, Todd R et al. (2018) Effects of adamantane alterations on soluble epoxide hydrolase inhibition potency, physical properties and metabolic stability. Bioorg Chem 76:510-527
Stamou, Marianna; Grodzki, Ana Cristina; van Oostrum, Marc et al. (2018) Fc gamma receptors are expressed in the developing rat brain and activate downstream signaling molecules upon cross-linking with immune complex. J Neuroinflammation 15:7
Huo, Jingqian; Li, Zhenfeng; Wan, Debin et al. (2018) Development of a Highly Sensitive Direct Competitive Fluorescence Enzyme Immunoassay Based on a Nanobody-Alkaline Phosphatase Fusion Protein for Detection of 3-Phenoxybenzoic Acid in Urine. J Agric Food Chem 66:11284-11290

Showing the most recent 10 out of 1149 publications