With the increase in the volume and complexity of environmental issues, there has been a growth in the demand for well-educated interdisciplinary scientists. As a result of this demand, institutions are initiating cohesive academic and research programs. Our SBRP is dedicated to addressing the shortage of diverse scientists and will provide interdisciplinary training opportunities. The Objective of our SBRP Training Program is to produce interdisciplinary graduates who are equipped to address 21st century environmental hazardous waste problems. The theme of our education and training program is to establish interdisciplinary interaction as the norm for exploration of health effects and for development of creative and cost-effective detection, assessment, and amelioration techniques that can be used to address existing and emerging complex environmental hazardous waste problems. To provide this training our SBRP trainees will be: 1) required to take courses in SBRP disciplines outside their major; 2) encouraged to include SBRP professors in disciplines outside their major on their graduate committees; 3) required to attend seminars outside of their respective disciplines throughout their graduate program; 4) required to participate in a monthly """"""""Colloquium on Environmental Health and Science""""""""; 5) required to participate in the annual UA NIEHS Science Fair; 6) expected to attend at least one national or regional Superfund meeting. This training and experience will prepare graduates from our Training Core to handle the hazardous waste problems of the future.

Agency
National Institute of Health (NIH)
Institute
National Institute of Environmental Health Sciences (NIEHS)
Type
Hazardous Substances Basic Research Grants Program (NIEHS) (P42)
Project #
5P42ES004940-17
Application #
7311858
Study Section
Special Emphasis Panel (ZES1)
Project Start
Project End
Budget Start
2006-04-01
Budget End
2007-03-31
Support Year
17
Fiscal Year
2006
Total Cost
$158,609
Indirect Cost
Name
University of Arizona
Department
Type
DUNS #
806345617
City
Tucson
State
AZ
Country
United States
Zip Code
85721
Pu, Mengjie; Guan, Zeyu; Ma, Yongwen et al. (2018) Synthesis of iron-based metal-organic framework MIL-53 as an efficient catalyst to activate persulfate for the degradation of Orange G in aqueous solution. Appl Catal A Gen 549:82-92
Brusseau, Mark L; Guo, Zhilin (2018) The integrated contaminant elution and tracer test toolkit, ICET3, for improved characterization of mass transfer, attenuation, and mass removal. J Contam Hydrol 208:17-26
Valentín-Vargas, Alexis; Neilson, Julia W; Root, Robert A et al. (2018) Treatment impacts on temporal microbial community dynamics during phytostabilization of acid-generating mine tailings in semiarid regions. Sci Total Environ 618:357-368
Brusseau, Mark L (2018) Assessing the potential contributions of additional retention processes to PFAS retardation in the subsurface. Sci Total Environ 613-614:176-185
Delikhoon, Mahdieh; Fazlzadeh, Mehdi; Sorooshian, Armin et al. (2018) Characteristics and health effects of formaldehyde and acetaldehyde in an urban area in Iran. Environ Pollut 242:938-951
Hammond, Corin M; Root, Robert A; Maier, Raina M et al. (2018) Mechanisms of Arsenic Sequestration by Prosopis juliflora during the Phytostabilization of Metalliferous Mine Tailings. Environ Sci Technol 52:1156-1164
Yan, Ni; Zhong, Hua; Brusseau, Mark L (2018) The natural activation ability of subsurface media to promote in-situ chemical oxidation of 1,4-dioxane. Water Res 149:386-393
Madeira, Camila L; Field, Jim A; Simonich, Michael T et al. (2018) Ecotoxicity of the insensitive munitions compound 3-nitro-1,2,4-triazol-5-one (NTO) and its reduced metabolite 3-amino-1,2,4-triazol-5-one (ATO). J Hazard Mater 343:340-346
Liu, Pengfei; Rojo de la Vega, Montserrat; Sammani, Saad et al. (2018) RPA1 binding to NRF2 switches ARE-dependent transcriptional activation to ARE-NRE-dependent repression. Proc Natl Acad Sci U S A 115:E10352-E10361
Thomas, Andrew N; Root, Robert A; Lantz, R Clark et al. (2018) Oxidative weathering decreases bioaccessibility of toxic metal(loid)s in PM10 emissions from sulfide mine tailings. Geohealth 2:118-138

Showing the most recent 10 out of 497 publications