Core E, the Integrative Biology Core, is an integral part of the overall objective of this program project, which is to understand the adverse effects of arsenic and mercury on human health. The overall goals of this core are to provide expert collaboration and technical support for each of the environmental health and toxicology research projects. We have assembled a team of experts in bioinformatics and biostatistics (former Core D), genomics, and molecular biology and proteomics (former Core A) along with a talented team of support staff that will work closely together and with Superfund investigators to help understand the role of toxic metals in determining human health and disease. Because Core E will play an important role in supporting each of the proposed research projects it is central to the overall Superfund program. The goal of the Integrative Biology Core is to facilitate and enhance environmental health and toxicology research by providing integrated professional collaboration and technical support in the quantitative and molecular sciences, specifically bringing together genomics and proteomics technologies with biostatistics, bioinformatics and modeling expertise.
Our specific aims are to: 1. Facilitate communication, coordination, development and implementation of resources, methodologies, tools and training that collectively integrate individual bioinformatics, biostatistics, genomics and proteomics groups at Dartmouth for more effective scientific research support of interdisciplinary projects with multiple levels of biological information;2. Facilitate environmental health and toxicology research by providing integrated professional collaboration and technical support in bioinformatics, biostatistics, genomics, and proteomics for experimental design, molecular profiling, quality control, data management, data analysis, data mining, statistical modeling and results interpretation;3. Develop, implement and support software, databases and other resources that foster collaborations among and assist in complex data interpretation of environmental health and toxicology investigators within and between Superfund programs;and 4. Facilitate the education and training of Superfund students, postdocs, and investigators in the application of Integrative Biology approaches to their research through weekly meetings, quarterly workshops and an annual symposium.

Agency
National Institute of Health (NIH)
Institute
National Institute of Environmental Health Sciences (NIEHS)
Type
Hazardous Substances Basic Research Grants Program (NIEHS) (P42)
Project #
5P42ES007373-18
Application #
8376744
Study Section
Special Emphasis Panel (ZES1-JAB-C)
Project Start
Project End
2014-03-31
Budget Start
2012-04-01
Budget End
2013-03-31
Support Year
18
Fiscal Year
2012
Total Cost
$248,566
Indirect Cost
$97,321
Name
Dartmouth College
Department
Type
DUNS #
041027822
City
Hanover
State
NH
Country
United States
Zip Code
03755
Andrew, Angeline S; Chen, Celia Y; Caller, Tracie A et al. (2018) Toenail mercury Levels are associated with amyotrophic lateral sclerosis risk. Muscle Nerve :
Eagles-Smith, Collin A; Silbergeld, Ellen K; Basu, Niladri et al. (2018) Modulators of mercury risk to wildlife and humans in the context of rapid global change. Ambio 47:170-197
Obrist, Daniel; Kirk, Jane L; Zhang, Lei et al. (2018) A review of global environmental mercury processes in response to human and natural perturbations: Changes of emissions, climate, and land use. Ambio 47:116-140
Farzan, Shohreh F; Howe, Caitlin G; Chen, Yu et al. (2018) Prenatal lead exposure and elevated blood pressure in children. Environ Int 121:1289-1296
Deyssenroth, Maya A; Gennings, Chris; Liu, Shelley H et al. (2018) Intrauterine multi-metal exposure is associated with reduced fetal growth through modulation of the placental gene network. Environ Int 120:373-381
Chen, Celia Y; Driscoll, Charles T; Eagles-Smith, Collin A et al. (2018) A Critical Time for Mercury Science to Inform Global Policy. Environ Sci Technol 52:9556-9561
Punshon, Tracy; Carey, Anne-Marie; Ricachenevsky, Felipe Klein et al. (2018) Elemental distribution in developing rice grains and the effect of flag-leaf arsenate exposure. Environ Exp Bot 149:51-58
Liu, Maodian; Zhang, Qianru; Luo, Yao et al. (2018) Impact of Water-Induced Soil Erosion on the Terrestrial Transport and Atmospheric Emission of Mercury in China. Environ Sci Technol 52:6945-6956
Chen, Celia Y; Driscoll, Charles T (2018) Integrating mercury research and policy in a changing world. Ambio 47:111-115
Liu, Maodian; He, Yipeng; Baumann, Zofia et al. (2018) Traditional Tibetan Medicine Induced High Methylmercury Exposure Level and Environmental Mercury Burden in Tibet, China. Environ Sci Technol 52:8838-8847

Showing the most recent 10 out of 372 publications