The long-term goal of Project #4 is to better understand the relationship between the observed concentrations in ambient air and specific sources of airborne PCBs in residential and industrial communities. The central hypothesis is that emissions of airborne PCBs are a function of measureable and quantifiable characteristics of the physical-chemical characteristics of the compounds and exposed environmental surfaces on which the PCBs reside.
The Aims focus on identification, characterization and prediction of the magnitude and impact of sources of airborne PCBs:
Aim 1 : To determine the sources and fate of airborne PCB congeners in the urban/industrial complex of Chicago. We hypothesize that airborne PCBs in Chicago originate from contaminated surfaces throughout the city. We will test our hypotheses by deploying air samplers throughout the City of Chicago and over seasons. Using the measurements, models, and geographic databases, we will determine the relative contribution of Chicago sources toward the annual mass of PCBs deposited in Lake Michigan, distinguish long range versus local sources of airborne PCBs to the region, and determine neighborhoods of elevated risk for high exposure to airborne PCBs.
Aim 2 : To chapacterize the sources and Aroclor PCBs. We hypothesize that non-Aroclor PCBs have beeN released to the environment for decades and conthnue to be released due to their presence in commercial paint and other buil$ing materials. We wihl test this hypothesis by measuring non-Aroclor PCBs in archival and new samples and by measuring PCBs in c/mmercial paint. Using sediment cores and archived sample extracts, we will ddtermine the chronology of environmental exposure to these compounds and the magnitude of their current emissions.
Aim 3 : To characterize the emission and fate of airborne PCBs in the Indiana Harbor and Ship Canal (IHSC). We hypothesize that the sediment of the IHSC is a major source of airborne PCB congeners to the community of East Chicago, Indiana. To test our hypotheses, we will measure PCBs in deep sediments of the IHSC. We will calculate the release of PCBs under no-dredging and dredging-conditions, including partial Removal that exposes deep sediments. We will monitor the effect of dredging through local and regional air measurements. As a result of the work described here, Project #4 will promote more scientifically-sound and effective action to reduce human exposure to these potentially harmful compounds.

Agency
National Institute of Health (NIH)
Institute
National Institute of Environmental Health Sciences (NIEHS)
Type
Hazardous Substances Basic Research Grants Program (NIEHS) (P42)
Project #
5P42ES013661-09
Application #
8659478
Study Section
Special Emphasis Panel (ZES1-LWJ-M)
Project Start
Project End
Budget Start
2014-04-01
Budget End
2015-03-31
Support Year
9
Fiscal Year
2014
Total Cost
$260,828
Indirect Cost
$72,021
Name
University of Iowa
Department
Type
DUNS #
062761671
City
Iowa City
State
IA
Country
United States
Zip Code
52242
Enayah, Sabah H; Vanle, Brigitte C; Fuortes, Laurence J et al. (2018) PCB95 and PCB153 change dopamine levels and turn-over in PC12 cells. Toxicology 394:93-101
Klinefelter, Kelsey; Hooven, Molly Kromme; Bates, Chloe et al. (2018) Genetic differences in the aryl hydrocarbon receptor and CYP1A2 affect sensitivity to developmental polychlorinated biphenyl exposure in mice: relevance to studies of human neurological disorders. Mamm Genome 29:112-127
Gourronc, Francoise A; Robertson, Larry W; Klingelhutz, Aloysius J (2018) A delayed proinflammatory response of human preadipocytes to PCB126 is dependent on the aryl hydrocarbon receptor. Environ Sci Pollut Res Int 25:16481-16492
Alam, Sinthia; Carter, Gwendolyn S; Krager, Kimberly J et al. (2018) PCB11 Metabolite, 3,3'-Dichlorobiphenyl-4-ol, Exposure Alters the Expression of Genes Governing Fatty Acid Metabolism in the Absence of Functional Sirtuin 3: Examining the Contribution of MnSOD. Antioxidants (Basel) 7:
Li, Xueshu; Holland, Erika B; Feng, Wei et al. (2018) Authentication of synthetic environmental contaminants and their (bio)transformation products in toxicology: polychlorinated biphenyls as an example. Environ Sci Pollut Res Int 25:16508-16521
Sethi, Sunjay; Keil, Kimberly P; Lein, Pamela J (2018) 3,3'-Dichlorobiphenyl (PCB 11) promotes dendritic arborization in primary rat cortical neurons via a CREB-dependent mechanism. Arch Toxicol 92:3337-3345
Parker, Victoria S; Squirewell, Edwin J; Lehmler, Hans-Joachim et al. (2018) Hydroxylated and sulfated metabolites of commonly occurring airborne polychlorinated biphenyls inhibit human steroid sulfotransferases SULT1E1 and SULT2A1. Environ Toxicol Pharmacol 58:196-201
Mattes, Timothy E; Ewald, Jessica M; Liang, Yi et al. (2018) PCB dechlorination hotspots and reductive dehalogenase genes in sediments from a contaminated wastewater lagoon. Environ Sci Pollut Res Int 25:16376-16388
Uwimana, Eric; Ruiz, Patricia; Li, Xueshu et al. (2018) HUMAN CYP2A6, CYP2B6 AND CYP2E1 ATROPSELECTIVELY METABOLIZE POLYCHLORINATED BIPHENYLS TO HYDROXYLATED METABOLITES. Environ Sci Technol :
Rodriguez, Eric A; Vanle, Brigitte C; Doorn, Jonathan A et al. (2018) Hydroxylated and sulfated metabolites of commonly observed airborne polychlorinated biphenyls display selective uptake and toxicity in N27, SH-SY5Y, and HepG2 cells. Environ Toxicol Pharmacol 62:69-78

Showing the most recent 10 out of 298 publications