Mount Sinai ADRC (Sano): Project 2 (Buettner) | PROJECT SUMMARY Potential factors contributing to the increased risk for cognitive impairment (CI) in type 2 diabetes (T2D) include: (a) components of Alzheimer's disease (AD) pathology (plaques, tangles, synapse loss, neuronal loss); (b) atherosclerotic vasculopathy; (c) brain insulin resistance; (d) inflammation; (e) prior episodes of hypoglycemia; (f) other, as yet unknown factors. In the only report of this topic in which AD brain has been assessed directly, Talbot et al 17 presented evidence in support of the hypothesis that insulin resistance is a consistent feature of all typical, sporadic AD. Project 2 focuses on the putative pathophysiological underpinnings between insulin resistance/T2D and CI. Investigators in Project 2 will use an induced pluripotent stem cell (iPSC) strategy to derive neurons, astrocytes, mixed brain cell cultures, and white adipocytes from various clinical populations defined in Project 1. The neurons, astrocytes, and mixed cultures will be used to study the cellular phenotypes and insulin sensitivities of central nervous system (CNS) cells, while the adipocytes will be used as exemplars of peripheral insulin-sensitive cells. We will assess quantitatively the insulin sensitivities in CNS and peripheral cells derived from iPSCs from various clinical populations defined in Project 1. In order to establish the insulin sensitivity of the iPSC-derived neuron, we will study classical insulin signaling pathways in all cell types as assessed through the phosphorylation state of downstream signaling molecules. Importantly, as a physiological readout for insulin action, we will study neurons by electrophysiology and calcium imaging, while adipocytes will be characterized through the assessment of the ability of insulin to increase glucose uptake and to suppress lipolysis. To ascertain the dependence of these responses of insulin signaling through the insulin receptor, we will employ both pharmacological or molecular approaches, the latter via an antisense-mediated knockdown of the insulin receptor or the expression of a dominant-negative mutant version of the insulin-like growth factor (IGF)-1 receptor that heterodimerizes with the insulin receptor and blocks its function. These studies will establish whether insulin resistance is a feature of AD in peripheral and/or brain cells. Additional studies will provide a direct assessment for the possible participation of insulin resistance in the generation of structural pathology causing or predisposing to CI. With regard to pathology, we will measure insulin-stimulated A? secretion, and insulin-modulated tau phosphorylation in brain cells derived from the clinical populations defined in Project 1. Overall, the data derived from this project will test the hypothesis that insulin resistance is a consistent feature of the sporadic AD phenotype.

Public Health Relevance

Mount Sinai ADRC: Project 2 (Buettner) | NARRATIVE Narrative Project 2 will study the link between insulin resistance/type 2 diabetes (T2D) and cognitive impairment using induced pluripotent stem cells (iPSC) from various clinical populations defined in Project 1. These cells will be used to generate brain cells and white adipocytes to test whether central nervous system (CNS) insulin resistance links T2D and AD.

Agency
National Institute of Health (NIH)
Institute
National Institute on Aging (NIA)
Type
Specialized Center (P50)
Project #
5P50AG005138-33
Application #
9280770
Study Section
Special Emphasis Panel (ZAG1)
Project Start
Project End
Budget Start
2017-04-01
Budget End
2018-03-31
Support Year
33
Fiscal Year
2017
Total Cost
Indirect Cost
Name
Icahn School of Medicine at Mount Sinai
Department
Type
DUNS #
078861598
City
New York
State
NY
Country
United States
Zip Code
10029
Girdhar, Kiran; Hoffman, Gabriel E; Jiang, Yan et al. (2018) Cell-specific histone modification maps in the human frontal lobe link schizophrenia risk to the neuronal epigenome. Nat Neurosci 21:1126-1136
Kamara, Dennis M; Gangishetti, Umesh; Gearing, Marla et al. (2018) Cerebral Amyloid Angiopathy: Similarity in African-Americans and Caucasians with Alzheimer's Disease. J Alzheimers Dis 62:1815-1826
Wang, Tingyan; Qiu, Robin G; Yu, Ming (2018) Predictive Modeling of the Progression of Alzheimer's Disease with Recurrent Neural Networks. Sci Rep 8:9161
Huang, Qian; Voloudakis, Georgios; Ren, Yimin et al. (2018) Presenilin1/?-secretase protects neurons from glucose deprivation-induced death by regulating miR-212 and PEA15. FASEB J 32:243-253
Hauberg, Mads E; Fullard, John F; Zhu, Lingxue et al. (2018) Differential activity of transcribed enhancers in the prefrontal cortex of 537 cases with schizophrenia and controls. Mol Psychiatry :
Giambartolomei, Claudia; Zhenli Liu, Jimmy; Zhang, Wen et al. (2018) A Bayesian framework for multiple trait colocalization from summary association statistics. Bioinformatics 34:2538-2545
Agogo, George O; Ramsey, Christine M; Gnjidic, Danijela et al. (2018) Longitudinal associations between different dementia diagnoses and medication use jointly accounting for dropout. Int Psychogeriatr 30:1477-1487
Kaur, Antarpreet; Edland, Steven D; Peavy, Guerry M (2018) The MoCA-Memory Index Score: An Efficient Alternative to Paragraph Recall for the Detection of Amnestic Mild Cognitive Impairment. Alzheimer Dis Assoc Disord 32:120-124
Agrawal, A; Chou, Y-L; Carey, C E et al. (2018) Genome-wide association study identifies a novel locus for cannabis dependence. Mol Psychiatry 23:1293-1302
Brenowitz, Willa D; Han, Fang; Kukull, Walter A et al. (2018) Treated hypothyroidism is associated with cerebrovascular disease but not Alzheimer's disease pathology in older adults. Neurobiol Aging 62:64-71

Showing the most recent 10 out of 555 publications