The goals of Project 2 are to define the natural history and biological substrate of age-associated cognitive decline in humans and to distinguish these features from those occurring in Alzheimer's disease (AD). To this end, we plan to characterize age-related alterations in memory and cognition in a cohort of elderly nondemented subjects in the Baltimore Longitudinal Study of Aging and to analyze neuropathological/neurochemical changes in the brains of these and other individuals, ranging in age from the second to the ninth decades. In these brains, we will map the distribution of pathology in the amygdala, hippocampus, dorsomedial nucleus of the thalamus, and prefrontal cortex - - anatomical structures known to play important roles in memory and learning, cognitive functions that decline in older individuals. Combining classical and new techniques, we will first determine the course of development of senile plaques and neurofibrillary tangles. subsequently, we will examine relationships between expression of the beta-amyloid precursor protein gene and neurofilament genes and their proteins in the development of plaques and tangles. To determine whether nerve cells degenerate and die or whether their sizes decrease with age, we will use computerized morphometry to analyze selected cell populations in hippocampus and neocortex. In parallel, to probe a functional parameter of neurons, we will measure age-associated alterations in levels of neurotransmitter markers. Finally, we plan to compare the distribution of abnormalities that occur in the brains of neuropsychologically characterized, nondemented aged individuals to patterns of changes that occur in subjects with AD. This comparison should yield useful information to delineate pathogenetic hypotheses for AD and, at the same time, to allow more satisfactory definition of diagnostic criteria useful for separating the pathology of aging from that of AD. Thus, Project 2 will provide insights into the nature and biological substrate of cognitive decline in aging, will offer clues to the pathogenesis of degenerative processes that occur in aging, and will clarify boundaries between normal aging and AD.

Agency
National Institute of Health (NIH)
Institute
National Institute on Aging (NIA)
Type
Specialized Center (P50)
Project #
5P50AG005146-08
Application #
3809228
Study Section
Project Start
Project End
Budget Start
Budget End
Support Year
8
Fiscal Year
1990
Total Cost
Indirect Cost
Name
Johns Hopkins University
Department
Type
DUNS #
045911138
City
Baltimore
State
MD
Country
United States
Zip Code
21218
Ting, Simon Kang Seng; Foo, Heidi; Chia, Pei Shi et al. (2018) Dyslexic Characteristics of Chinese-Speaking Semantic Variant of Primary Progressive Aphasia. J Neuropsychiatry Clin Neurosci 30:31-37
Eavani, Harini; Habes, Mohamad; Satterthwaite, Theodore D et al. (2018) Heterogeneity of structural and functional imaging patterns of advanced brain aging revealed via machine learning methods. Neurobiol Aging 71:41-50
Wang, Tingyan; Qiu, Robin G; Yu, Ming (2018) Predictive Modeling of the Progression of Alzheimer's Disease with Recurrent Neural Networks. Sci Rep 8:9161
Barnes, Josephine; Bartlett, Jonathan W; Wolk, David A et al. (2018) Disease Course Varies According to Age and Symptom Length in Alzheimer's Disease. J Alzheimers Dis 64:631-642
Agogo, George O; Ramsey, Christine M; Gnjidic, Danijela et al. (2018) Longitudinal associations between different dementia diagnoses and medication use jointly accounting for dropout. Int Psychogeriatr 30:1477-1487
Seddighi, Sahba; Varma, Vijay R; An, Yang et al. (2018) SPARCL1 Accelerates Symptom Onset in Alzheimer's Disease and Influences Brain Structure and Function During Aging. J Alzheimers Dis 61:401-414
Fredericks, Carolyn A; Sturm, Virginia E; Brown, Jesse A et al. (2018) Early affective changes and increased connectivity in preclinical Alzheimer's disease. Alzheimers Dement (Amst) 10:471-479
Holingue, Calliope; Wennberg, Alexandra; Berger, Slava et al. (2018) Disturbed sleep and diabetes: A potential nexus of dementia risk. Metabolism 84:85-93
Alosco, Michael L; Sugarman, Michael A; Besser, Lilah M et al. (2018) A Clinicopathological Investigation of White Matter Hyperintensities and Alzheimer's Disease Neuropathology. J Alzheimers Dis 63:1347-1360
van Bergen, Jiri M G; Li, Xu; Quevenco, Frances C et al. (2018) Low cortical iron and high entorhinal cortex volume promote cognitive functioning in the oldest-old. Neurobiol Aging 64:68-75

Showing the most recent 10 out of 830 publications