Reactive oxygen species derive from a number of different sources, and traditional and putative breast cancer risk factors can be linked to the disease by an oxidative stress mechanism, for example: 1) steroid hormones, as well as some environmental organochlorines, are metabolized to reactive quinones and hydroquinones, which can directly damage DNA; 2) the metabolism of alcohol results in production of ROS and damage to DNA; 3) BRCA1 is needed for post-transcriptional repair of oxidative damage, indicating that oxidative stress may be an important risk factor for women with a family history of the disease; and 4) the inverse relationship noted with consumption of fruits and vegetables could be related to their being a source of antioxidant vitamins. Also, several markers of oxidative stress in a number of studies were higher in women with breast cancer and those at high risk than among non-diseased women. Endogenous factors affect not only the generation of ROS, but also an antioxidant response to them. We propose that inter-individual variability in genes that encode enzymes with pro-oxidant and antioxidant activities will have an impact on the generation of ROS and ultimately on breast cancer risk. Furthermore, we hypothesize that risk associated with metabolic variability will be associated with exposure to exogenous factors that increase the likelihood of production of ROS. In this project, we propose to evaluate this hypothesis utilizing data from the Long Island Breast Cancer Study Project. DNA isolated from the blood samples donated by a large population-based sample of breast cancer case and control women will be assayed for three different types of ROS-related genetic polymorphisms including: regulatory regions of enzymes or processes that generate ROS (myeloperoxidase and tumor necrosis factor-alpha); those that prevent oxidative stress by neutralizing ROS (extracellular and manganese superoxide dismutase, glutathione peroxidase, catalase and glutathione S-transferase Mi); and those that will affect ultimate levels of ROS generated by the metabolism of steroid hormones (catechol O-methyltransferase, glucuronosyltransferase). In addition to the large number of subjects for whom samples are available for the laboratory analyses (n = 1087 cases and 1122 controls), comprehensive assessment of the subjects? environmental exposures has already been obtained in the parent study. Thus, we can also explore whether the genetic polymorphisms in ?at-risk? genotypes will affect associations between breast cancer risk and factors that are likely to be related through an oxidative stress mechanism, such as fruit and vegetable intake, reproductive and hormonal factors, alcohol consumption, and environmental contaminants (organochlorines and PAHs). Results from this project can be confirmed utilizing data from the Carolina Breast Cancer Study.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Specialized Center (P50)
Project #
2P50CA058223-09A1
Application #
6547531
Study Section
Special Emphasis Panel (ZCA1)
Project Start
1992-09-30
Project End
2006-07-31
Budget Start
Budget End
Support Year
9
Fiscal Year
2001
Total Cost
Indirect Cost
Name
University of North Carolina Chapel Hill
Department
Type
DUNS #
078861598
City
Chapel Hill
State
NC
Country
United States
Zip Code
27599
Tanioka, Maki; Mott, Kevin R; Hollern, Daniel P et al. (2018) Identification of Jun loss promotes resistance to histone deacetylase inhibitor entinostat through Myc signaling in luminal breast cancer. Genome Med 10:86
Tanioka, Maki; Fan, Cheng; Parker, Joel S et al. (2018) Integrated Analysis of RNA and DNA from the Phase III Trial CALGB 40601 Identifies Predictors of Response to Trastuzumab-Based Neoadjuvant Chemotherapy in HER2-Positive Breast Cancer. Clin Cancer Res 24:5292-5304
Mundt, Filip; Rajput, Sandeep; Li, Shunqiang et al. (2018) Mass Spectrometry-Based Proteomics Reveals Potential Roles of NEK9 and MAP2K4 in Resistance to PI3K Inhibition in Triple-Negative Breast Cancers. Cancer Res 78:2732-2746
Takaku, Motoki; Grimm, Sara A; Roberts, John D et al. (2018) GATA3 zinc finger 2 mutations reprogram the breast cancer transcriptional network. Nat Commun 9:1059
Butler, Eboneé N; Bensen, Jeannette T; Chen, Mengjie et al. (2018) Prediagnostic Smoking Is Associated with Binary and Quantitative Measures of ER Protein and ESR1 mRNA Expression in Breast Tumors. Cancer Epidemiol Biomarkers Prev 27:67-74
Echavarria, Isabel; López-Tarruella, Sara; Picornell, Antoni et al. (2018) Pathological Response in a Triple-Negative Breast Cancer Cohort Treated with Neoadjuvant Carboplatin and Docetaxel According to Lehmann's Refined Classification. Clin Cancer Res 24:1845-1852
Cai, Ling; Tsai, Yi-Hsuan; Wang, Ping et al. (2018) ZFX Mediates Non-canonical Oncogenic Functions of the Androgen Receptor Splice Variant 7 in Castrate-Resistant Prostate Cancer. Mol Cell 72:341-354.e6
Bensen, Jeannette T; Graff, Mariaelisa; Young, Kristin L et al. (2018) A survey of microRNA single nucleotide polymorphisms identifies novel breast cancer susceptibility loci in a case-control, population-based study of African-American women. Breast Cancer Res 20:45
Puvanesarajah, Samantha; Nyante, Sarah J; Kuzmiak, Cherie M et al. (2018) PAM50 and Risk of Recurrence Scores for Interval Breast Cancers. Cancer Prev Res (Phila) 11:327-336
Knott, Simon R V; Wagenblast, Elvin; Khan, Showkhin et al. (2018) Asparagine bioavailability governs metastasis in a model of breast cancer. Nature 554:378-381

Showing the most recent 10 out of 598 publications