The lethality of prostate cancer (PCa) is attributable to the metastatic castration resistant state (CRPC). Accordingly, an understanding of the biochemical and genetic alterations that drive metastasis and castration resistance offers the potential and promise of identifying molecular targets for therapeutic intervention. During the current SPORE funding period, we have made significant advances in the elucidation of key signaling pathways that mediate castration resistance and metastasis. To investigate the molecular underpinnings of metastasis in Aim 1 of our proposal, we will use our recently developed mouse model in which the PI3K/AKT and Ras/MAPK pathways are simultaneously altered, as seen in humans, in a prostate-specific fashion. The double mutants spontaneously develop metastases, which are absent in mice with single pathway alterations. Thus, these mouse models will allow us to establish the role of interactions between the PISK/AKT and Ras/MAPK pathways in the development of metastasis as well as castration resistance and screen for therapeutic agents that can prevent or delay metastatic progression. Our recent studies also identified a novel mechanism of PI3K/AKT activation in response to androgen deprivation therapy, which leads to castration resistant growth. Conversely, PISK inhibition results in enhanced AR transcriptional output. Thus, the compensatory activation of one of these pathways in response to inhibition of the other represents a built-in mechanism of resistance to therapies aimed at targeting either one of these pathways in isolation and suggests that simultaneous inhibition of both the PISK/AKT and AR pathways is necessary to achieve maximal anti-tumor effects and avert castration resistance. Based on this finding, a three-arn phase 2 randomized neoadjuvant pre-prostactomy trial is designed (Aim 2) to target the PISK/AKT and AR pathways alone or in combination and study the downstream signaling and transcriptional output. Associated with this trial, we will also test non-invasive imaging technologies for monitoring pathway alterations and target responses. The success of our proposed research will provide vital insight into and identify therapies for metastasis and castration resistance, two processes that render PCa lethal.

Public Health Relevance

PCa mortality is invariably associated with the development of metastases and resistance to castration. We have designed experiments in mice and a clinical trial in patients to elucidate the crucial biochemical signals that promote the metastatic and castration resistant states. We will not only gain a better understanding of these lethal processes, but more importantly, identify relevant drug targets and specific drugs that can be applied to patients who suffer from deadly forms of PCa.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Specialized Center (P50)
Project #
3P50CA092131-15S1
Application #
9785011
Study Section
Special Emphasis Panel (ZCA1)
Program Officer
Hruszkewycz, Andrew M
Project Start
2002-09-15
Project End
2019-08-31
Budget Start
2018-09-01
Budget End
2019-08-31
Support Year
15
Fiscal Year
2018
Total Cost
Indirect Cost
Name
University of California Los Angeles
Department
Type
DUNS #
092530369
City
Los Angeles
State
CA
Country
United States
Zip Code
90095
Mitra, Mithun; Lee, Ha Neul; Coller, Hilary A (2018) Determining Genome-wide Transcript Decay Rates in Proliferating and Quiescent Human Fibroblasts. J Vis Exp :
Zou, Yongkang; Qi, Zhi; Guo, Weilong et al. (2018) Cotargeting the Cell-Intrinsic and Microenvironment Pathways of Prostate Cancer by PI3K?/?/? Inhibitor BAY1082439. Mol Cancer Ther 17:2091-2099
Henning, Susanne M; Galet, Colette; Gollapudi, Kiran et al. (2018) Phase II prospective randomized trial of weight loss prior to radical prostatectomy. Prostate Cancer Prostatic Dis 21:212-220
Miller, Eric T; Salmasi, Amirali; Reiter, Robert E (2018) Anatomic and Molecular Imaging in Prostate Cancer. Cold Spring Harb Perspect Med 8:
Navarro, Héctor I; Goldstein, Andrew S (2018) HoxB13 mediates AR-V7 activity in prostate cancer. Proc Natl Acad Sci U S A 115:6528-6529
Mitra, Mithun; Ho, Linda D; Coller, Hilary A (2018) An In Vitro Model of Cellular Quiescence in Primary Human Dermal Fibroblasts. Methods Mol Biol 1686:27-47
Li, Jiayun; Speier, William; Ho, King Chung et al. (2018) An EM-based semi-supervised deep learning approach for semantic segmentation of histopathological images from radical prostatectomies. Comput Med Imaging Graph 69:125-133
Kang, Jung J; Reiter, Robert E; Kummer, Nicolas et al. (2018) Wrong to be Right: Margin Laterality is an Independent Predictor of Biochemical Failure After Radical Prostatectomy. Am J Clin Oncol 41:1-5
Lee, Ha Neul; Mitra, Mithun; Bosompra, Oye et al. (2018) RECK isoforms have opposing effects on cell migration. Mol Biol Cell 29:1825-1838
Aggarwal, Rahul; Huang, Jiaoti; Alumkal, Joshi J et al. (2018) Clinical and Genomic Characterization of Treatment-Emergent Small-Cell Neuroendocrine Prostate Cancer: A Multi-institutional Prospective Study. J Clin Oncol 36:2492-2503

Showing the most recent 10 out of 339 publications