BRAF inhibitors lack efficacy in BRAF mutant (BRAFm) CRC (response rate only 5%) in contrast to response rates of >50% in BRAFm melanoma. Key studies conducted as part of our prior SPORE project identified feedback networks present in CRC (but absent in melanoma) that lead to rapid reactivation of MAPK signaling following BRAF inhibition, as primary drivers of resistance. This critical discovery led to clinical trials of BRAFi-based therapeutic combinations designed to block MAPK reactivation, resulting in an increased response rate for BRAFm CRC patients from 5% to >30%. Despite these therapeutic advances, clinical benefit is not durable, with a median PFS of only 4-5 months. Here we will explore potential cooperativity between targeted MAPK inhibition (MAPKi) and immune checkpoint blockade (ICB) to convert less immune responsive tumors to more immunogenic tumors. BRAFm CRC represents a prime population for exploring potential cooperativity, as 20-30% of metastatic BRAFm CRCs harbor MSI, which confers responsiveness to ICB. Moreover, we have observed durable responses of >5 years in MSI BRAFm CRC patients receiving MAPKi alone. In MSS BRAFm CRC patients, we see marked induction of CD4+ and CD8+ T-cells with MAPKi alone in paired tumor biopsies, and our preclinical mouse models demonstrate a cooperative effect of MAPKi and PD-1 IC in MSS BRAFm CRC. We propose a comprehensive effort using innovative immune competent BRAFm CRC mouse models, cutting-edge molecular and immune analyses of paired pre- and on-treatment tumor biopsies, and novel clinical trials to explore combined MAPKi and ICB as a strategy to achieve durable benefit in BRAFm CRC patients.
Aim 1 will define the effects of MAPKi alone and with PD-1 ICB on immunogenicity of BRAFm CRC and anti-tumor immunity using immunologic and transcriptional profiling approaches to analyze novel BRAFm CRC models and a unique collection of paired pre-treatment and on-treatment biopsies from BRAFm CRC patients given BRAF/EGFR/MEKi.
Aim 2 will conduct clinical trials and correlative studies of novel immune and targeted combinations for BRAFm CRC, evaluating clinical efficacy of combined BRAF/MEK/PD-1 inhibition. We will collaborate with the Pathology Core for multiplexed immune analysis of tumor biopsies, and the Biostats Core for analysis of bulk and single cell RNAseq and whole-exome sequencing. These studies will provide key insights to guide design of future trials.
Aim 3 will define mechanisms of response and resistance to combined MAPKi and ICB in BRAFm CRC mouse models, and test strategies to overcome resistance to MAPKi/anti-PD-1 using combined ICB and modulators of immunosuppressive mechanisms defined by our analyses in Aims 1 and 2. These studies will define the potential synergy between MAPKi and ICB in BRAFm CRC and mechanisms of response and resistance to establish a new therapeutic paradigm for this lethal CRC subtype

Public Health Relevance

Project 1 will determine effectiveness of MAPK-targeted therapy combined with anti-PD-1 for BRAFm CRC patients using immune competent BRAFm CRC mouse models and tumor biopsies from BRAFm CRC patients to define effects on tumor immunogenicity and immune response, identify patients most likely to benefit, and identify novel candidate targets to combine with MAPKi and anti-PD1 based on RNAseq data.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Specialized Center (P50)
Project #
5P50CA127003-12
Application #
10005197
Study Section
Special Emphasis Panel (ZCA1)
Project Start
2007-04-01
Project End
2024-05-31
Budget Start
2020-06-01
Budget End
2021-05-31
Support Year
12
Fiscal Year
2020
Total Cost
Indirect Cost
Name
Dana-Farber Cancer Institute
Department
Type
DUNS #
076580745
City
Boston
State
MA
Country
United States
Zip Code
02215
Strickler, John H; Loree, Jonathan M; Ahronian, Leanne G et al. (2018) Genomic Landscape of Cell-Free DNA in Patients with Colorectal Cancer. Cancer Discov 8:164-173
Khalaf, Natalia; Yuan, Chen; Hamada, Tsuyoshi et al. (2018) Regular Use of Aspirin or Non-Aspirin Nonsteroidal Anti-Inflammatory Drugs Is Not Associated With Risk of Incident Pancreatic Cancer in Two Large Cohort Studies. Gastroenterology 154:1380-1390.e5
Hamada, Tsuyoshi; Liu, Li; Nowak, Jonathan A et al. (2018) Vitamin D status after colorectal cancer diagnosis and patient survival according to immune response to tumour. Eur J Cancer 103:98-107
Qian, Zhi Rong; Rubinson, Douglas A; Nowak, Jonathan A et al. (2018) Association of Alterations in Main Driver Genes With Outcomes of Patients With Resected Pancreatic Ductal Adenocarcinoma. JAMA Oncol 4:e173420
Nevo, Daniel; Nishihara, Reiko; Ogino, Shuji et al. (2018) The competing risks Cox model with auxiliary case covariates under weaker missing-at-random cause of failure. Lifetime Data Anal 24:425-442
Ma, Siyuan; Ogino, Shuji; Parsana, Princy et al. (2018) Continuity of transcriptomes among colorectal cancer subtypes based on meta-analysis. Genome Biol 19:142
Guercio, Brendan J; Zhang, Sui; Niedzwiecki, Donna et al. (2018) Associations of artificially sweetened beverage intake with disease recurrence and mortality in stage III colon cancer: Results from CALGB 89803 (Alliance). PLoS One 13:e0199244
Neumeyer, Sonja; Banbury, Barbara L; Arndt, Volker et al. (2018) Mendelian randomisation study of age at menarche and age at menopause and the risk of colorectal cancer. Br J Cancer 118:1639-1647
Aguirre, Andrew J; Nowak, Jonathan A; Camarda, Nicholas D et al. (2018) Real-time Genomic Characterization of Advanced Pancreatic Cancer to Enable Precision Medicine. Cancer Discov 8:1096-1111
Hill, Margaret A; Alexander, William B; Guo, Bing et al. (2018) Kras and Tp53 Mutations Cause Cholangiocyte- and Hepatocyte-Derived Cholangiocarcinoma. Cancer Res 78:4445-4451

Showing the most recent 10 out of 590 publications