Black-pigmented members of the bacterial genus Bacteroides (BPB's) are colonists of the oral cavity, and are frequently found in association with oro-facial infections. Colonization of the oral cavity by these organisms must involve their adhesion to some component of the environment in order to resist being flushed away by saliva or the flow of crevicular fluid. Almost all strains of BPB's examined to date carry fimbriae: polymers of a protein subunit (fimbrilin) which form filaments that project from the cell surface. Considerable evidence has been accumulated from other bacterial species to show that fimbriae mediate specific adherence to a variety of surfaces such as epithelial cells or other bacteria. We proposed to test this hypothesis by determining the adhesive properties of BPB fimbriae. Since the BPB's form a group of related species, the question arises as to the evolutionary relationship of their fimbriae. Thus, we wish to determine if the BPB fimbriae are ancestrally related. If so, do they perform a conserved function or different functions? If they are unrelated but perform similar functions, is this due to convergent evolution? Relatedness will be determined by comparison of the nucleotide sequences of the cloned genes encoding the fimbrial protein subunits. Completion of these studies will provide, at the molecular level, an understanding of the strategies used by BPB's for fimbrial mediated adhesions. Information will be gained on the evolutionary pathways leading to these strategies and their potential roles in colonization of the oral cavity.

Agency
National Institute of Health (NIH)
Institute
National Institute of Dental & Craniofacial Research (NIDCR)
Type
Specialized Center (P50)
Project #
5P50DE008240-05
Application #
3854360
Study Section
Project Start
Project End
Budget Start
Budget End
Support Year
5
Fiscal Year
1991
Total Cost
Indirect Cost
Name
State University of New York at Buffalo
Department
Type
DUNS #
038633251
City
Buffalo
State
NY
Country
United States
Zip Code
14260
Ohkusa, Toshifumi; Yoshida, Tsutomu; Sato, Nobuhiro et al. (2009) Commensal bacteria can enter colonic epithelial cells and induce proinflammatory cytokine secretion: a possible pathogenic mechanism of ulcerative colitis. J Med Microbiol 58:535-45
Sojar, Hakimuddin T; Genco, Robert J (2005) Identification of glyceraldehyde-3-phosphate dehydrogenase of epithelial cells as a second molecule that binds to Porphyromonas gingivalis fimbriae. FEMS Immunol Med Microbiol 45:25-30
Satyanarayana, J; Gururaja, T L; Narasimhamurthy, S et al. (2001) Synthesis and conformational features of human salivary mucin C-terminal derived peptide epitope carrying Thomsen-Friedenreich antigen: implications for its role in self-association. Biopolymers 58:500-10
Narasimhamurthy, S; Naganagowda, G A; Janagani, S et al. (2000) Solution structure of O-glycosylated C-terminal leucine zipper domain of human salivary mucin (MUC7). J Biomol Struct Dyn 18:145-54
Sojar, H T; Han, Y; Hamada, N et al. (1999) Role of the amino-terminal region of Porphyromonas gingivalis fimbriae in adherence to epithelial cells. Infect Immun 67:6173-6
Mettath, S; Munson, B R; Pandey, R K (1999) DNA interaction and photocleavage properties of porphyrins containing cationic substituents at the peripheral position. Bioconjug Chem 10:94-102
Gururaja, T L; Levine, J H; Tran, D T et al. (1999) Candidacidal activity prompted by N-terminus histatin-like domain of human salivary mucin (MUC7)1. Biochim Biophys Acta 1431:107-19
Tseng, C C; Miyamoto, M; Ramalingam, K et al. (1999) The roles of histidine residues at the starch-binding site in streptococcal-binding activities of human salivary amylase. Arch Oral Biol 44:119-27
Naganagowda, G A; Gururaja, T L; Satyanarayana, J et al. (1999) NMR analysis of human salivary mucin (MUC7) derived O-linked model glycopeptides: comparison of structural features and carbohydrate-peptide interactions. J Pept Res 54:290-310
Satyanarayana, J; Gururaja, T L; Naganagowda, G A et al. (1998) A concise methodology for the stereoselective synthesis of O-glycosylated amino acid building blocks: complete 1H NMR assignments and their application in solid-phase glycopeptide synthesis. J Pept Res 52:165-79

Showing the most recent 10 out of 162 publications