In the prior years of the grant, the Gene Transfer and Gene Therapy ore (GTAGTC) has produce retroviral vectors for the investigators of the projects. We have gained proficiency in the design, construction and packaging of HIV-1 based lentiviral vectors. The Core has also supported clinical gene therapy trials for Gaucher disease and ADA-deficient SCID. In the next funding period, the GTAGT Core will use current state-of-the- art vectors and packaging system to design, construct, package and perform initial characterization of retroviral and lentiviral vectors for investigators of the Projects to pursue their scientific objectives. Additionally, the Core will continue to perform transductions of patient HSC for clinical gene marking and gene therapy studies and molecular analyses of samples from clinical gene therapy trials to define the extents of gene transfer and expression.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Specialized Center (P50)
Project #
5P50HL054850-07
Application #
6500781
Study Section
Project Start
2001-09-15
Project End
2002-08-31
Budget Start
Budget End
Support Year
7
Fiscal Year
2001
Total Cost
$185,520
Indirect Cost
Name
Children's Hospital of Los Angeles
Department
Type
DUNS #
094878337
City
Los Angeles
State
CA
Country
United States
Zip Code
90027
Candotti, Fabio; Shaw, Kit L; Muul, Linda et al. (2012) Gene therapy for adenosine deaminase-deficient severe combined immune deficiency: clinical comparison of retroviral vectors and treatment plans. Blood 120:3635-46
Rappeport, Joel M; O'Reilly, Richard J; Kapoor, Neena et al. (2010) Hematopoietic stem cell transplantation for severe combined immune deficiency or what the children have taught us. Immunol Allergy Clin North Am 30:17-30
Bauer, Gerhard; Dao, Mo A; Case, Scott S et al. (2008) In vivo biosafety model to assess the risk of adverse events from retroviral and lentiviral vectors. Mol Ther 16:1308-15
Dao, Mo A; Nolta, Jan A (2007) Cytokine and integrin stimulation synergize to promote higher levels of GATA-2, c-myb, and CD34 protein in primary human hematopoietic progenitors from bone marrow. Blood 109:2373-9
Engel, Barbara C; Podsakoff, Greg M; Ireland, Joanna L et al. (2007) Prolonged pancytopenia in a gene therapy patient with ADA-deficient SCID and trisomy 8 mosaicism: a case report. Blood 109:503-6
Hollis, Roger P; Nightingale, Sarah J; Wang, Xiuli et al. (2006) Stable gene transfer to human CD34(+) hematopoietic cells using the Sleeping Beauty transposon. Exp Hematol 34:1333-43
Hess, David A; Wirthlin, Louisa; Craft, Timothy P et al. (2006) Selection based on CD133 and high aldehyde dehydrogenase activity isolates long-term reconstituting human hematopoietic stem cells. Blood 107:2162-9
Montecino-Rodriguez, Encarnacion; Leathers, Hyosuk; Dorshkind, Kenneth (2006) Identification of a B-1 B cell-specified progenitor. Nat Immunol 7:293-301
Buckley, S; Barsky, L; Weinberg, K et al. (2005) In vivo inosine protects alveolar epithelial type 2 cells against hyperoxia-induced DNA damage through MAP kinase signaling. Am J Physiol Lung Cell Mol Physiol 288:L569-75
Podsakoff, Greg M; Engel, Barbara C; Carbonaro, Denise A et al. (2005) Selective survival of peripheral blood lymphocytes in children with HIV-1 following delivery of an anti-HIV gene to bone marrow CD34(+) cells. Mol Ther 12:77-86

Showing the most recent 10 out of 55 publications