: High density lipoproteins (HDL) their major protein apoA-I directly protect against atherosclerosis cardiovascular disease, but the mechanisms are not well understood. In addition to its role in reverse cholesterol transport, HDL may have other properties that contribute to its anti-atherogenic effects. We hypothesize that HDL has anti oxidant and anti-inflammatory effects that are relevant and operative in vivo and are important components of the atheroprotective effects of HDL. The focus of this proposal is to test this hypothesis using relevant in vivo models in mice and in humans. We will utilize approaches as described in detail in Project 1 (oxidatively modified lipids), Project 2 (nitrated proteins), Project 3 (oxidatively modified extracellular matrix) and Project 4 (oxidative DNA adducts) of this SCOR proposal, to study novel mechanisms by which HDL inhibits atherogenesis.
Specific Aim 1 : To test the hypothesis that HDL inhibits oxidation of lipids (lipoprotein and plasma membrane), nitration of proteins, oxidative fragmentation of extracellular matrix, and DNA in vitro and to determine the mechanism for these anti-oxidant effects of HDL.
Specific Aim 2 : To use mouse models of atherosclerosis to determine the effect of both apoA-I deficiency and apoA-1 overexpression on markers of oxidative stress and inflammation in vivo and the relationship to atherosclerosis. Specifically, we will test: 1) that apoA-1 deficiency accelerates the age-related progression of markers of oxidant stress, vascular inflammation, and atherosclerosis; 2) that apoA-I overexpression reduces in vivo oxidant stress and vascular inflammation; 3) that HDL?s effect in increasing prostacyclin is an important in vivo by determining the effect of overexpression of apoA-I on atherosclerosis in the prostacyclin receptor (IP) knockout mouse; and 4) that HDL inhibits atherosclerosis even in the setting of impaired reverse cholesterol transport by determining the effect of apoA-I overexpression on atherosclerosis in SR-BI knockout mice.
Specific Aim 3 : A prospective observational study will be performed in asymptomatic persons with high HDL-C levels and two comparison groups: individuals with average HDL-C levels and individuals with low HDL-C levels. Baseline markers of oxidant stress and inflammation will be compared among the three groups. In addition, two quantitative measures of subclinical atherosclerosis, carotid intimal-medial thickness (IMT) and coronary artery calcification (CAC) will be determined at baseline. These baseline measures will be repeated at two years. In the three HDL strata, baseline levels of oxidant stress and inflammation will be examined as predictors of progression of atherosclerosis. The experiments proposed will generate substantial insight into the mechanisms by which HDL protects against atherosclerosis, information crucial to the rational development of novel HDL-raising strategies.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Specialized Center (P50)
Project #
1P50HL070128-01
Application #
6598241
Study Section
Special Emphasis Panel (ZHL1)
Project Start
2002-05-01
Project End
2007-03-31
Budget Start
Budget End
Support Year
1
Fiscal Year
2002
Total Cost
Indirect Cost
Name
University of Pennsylvania
Department
Type
DUNS #
042250712
City
Philadelphia
State
PA
Country
United States
Zip Code
19104
Patel, Parin J; Khera, Amit V; Wilensky, Robert L et al. (2013) Anti-oxidative and cholesterol efflux capacities of high-density lipoprotein are reduced in ischaemic cardiomyopathy. Eur J Heart Fail 15:1215-9
Khera, Amit V; Cuchel, Marina; de la Llera-Moya, Margarita et al. (2011) Cholesterol efflux capacity, high-density lipoprotein function, and atherosclerosis. N Engl J Med 364:127-35
Yamamoto, Shigenori; Tanigawa, Hiroyuki; Li, Xiaoyu et al. (2011) Pharmacologic suppression of hepatic ATP-binding cassette transporter 1 activity in mice reduces high-density lipoprotein cholesterol levels but promotes reverse cholesterol transport. Circulation 124:1382-90
Patel, Parin J; Khera, Amit V; Jafri, Kashif et al. (2011) The anti-oxidative capacity of high-density lipoprotein is reduced in acute coronary syndrome but not in stable coronary artery disease. J Am Coll Cardiol 58:2068-75
Lagor, William R; Rader, Daniel J (2011) Phospholipidation of HDL--how much is too much? Clin Chem 57:4-6
Nakaya, Kazuhiro; Tohyama, Junichiro; Naik, Snehal U et al. (2011) Peroxisome proliferator-activated receptor-? activation promotes macrophage reverse cholesterol transport through a liver X receptor-dependent pathway. Arterioscler Thromb Vasc Biol 31:1276-82
Degoma, Emil M; Rader, Daniel J (2011) Novel HDL-directed pharmacotherapeutic strategies. Nat Rev Cardiol 8:266-77
Heffron, Sean P; Parastatidis, Ioannis; Cuchel, Marina et al. (2009) Inflammation induces fibrinogen nitration in experimental human endotoxemia. Free Radic Biol Med 47:1140-6
Parastatidis, Ioannis; Thomson, Leonor; Burke, Anne et al. (2008) Fibrinogen beta-chain tyrosine nitration is a prothrombotic risk factor. J Biol Chem 283:33846-53
Price, Tom S; Baggs, Julie E; Curtis, Anne M et al. (2008) WAVECLOCK: wavelet analysis of circadian oscillation. Bioinformatics 24:2794-5

Showing the most recent 10 out of 55 publications